1 Aerosol information from the UV-visible spectrometer GOME-2 Piet Stammes, KNMI, De Bilt, The Netherlands 7 November 2012.

Slides:



Advertisements
Similar presentations
OMI follow-on Project Toekomstige missies gericht op troposfeer en klimaat Pieternel Levelt, KNMI.
Advertisements

SCIAMACHY Calibration Review, ESTEC, 11 September 2002 Tilstra, De Graaf, Stammes First verification of SCIAMACHY’s polarisation measurements Gijs Tilstra,
SSAG Data and Algorithm Subgroup, February 2004, Brussels Summary of data product and algorithm development at KNMI Ronald van der A, Juan Acarreta,
Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Simulation of skylight polarization with the DAK model and.
WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
A New A-Train Collocated Product : MODIS and OMI cloud data on the OMI footprint Brad Fisher 1, Joanna Joiner 2, Alexander Vasilkov 1, Pepijn Veefkind.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Institute.
Validation of Solar Backscatter Radiances Using Antarctic Ice Glen Jaross and Jeremy Warner Science Systems and Applications, Inc. Lanham, Maryland, USA.
Gerrit de Leeuw 1,2,3, Larisa Sogacheva1, Pekka Kolmonen 1, Anu-Maija Sundström 2, Edith Rodriguez 1 1 FMI, Climate Change Unit, Helsinki, Finland 2 Univ.
GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
A U R A Satellite Mission T E S
Quantifying aerosol direct radiative effect with MISR observations Yang Chen, Qinbin Li, Ralph Kahn Jet Propulsion Laboratory California Institute of Technology,
KNMI, The Netherlands * SCIAMACHY validation workshop, Bremen, 6 Dec ‘04 Large scale validation of SCIAMACHY nadir reflectance Gijs van.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
Direct Radiative Effect of aerosols over clouds and clear skies determined using CALIPSO and the A-Train Robert Wood with Duli Chand, Tad Anderson, Bob.
Gloudemans 1, J. de Laat 1,2, C. Dijkstra 1, H. Schrijver 1, I. Aben 1, G. vd Werf 3, M. Krol 1,4 Interannual variability of CO and its relation to long-range.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA.
Using MODIS fire count data as an interim solution for estimating biomass burning emission of aerosols and trace gases Mian Chin, Tom Kucsera, Louis Giglio,
OMI Aerosol Products: A tutorial ARSET Applied Remote SEnsing Training A project of NASA Applied Sciences.
REMOTE SENSING OF ATMOSPHERIC AEROSOL, CLOUDS, AND AEROSOL-CLOUD INTERACTION 16/12-19/12/2013, BREMEN Retrieval of aerosol optical properties for clear-sky.
ARCTAS BrO Measurements from the OMI and GOME-2 Satellite Instruments
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
UV Aerosol Indices from (TROP)OMI An investigation of viewing angle dependence , Marloes Penning de Vries and Thomas Wagner Max Planck Institute.
In Situ and Remote Sensing Characterization of Spectral Absorption by Black Carbon and other Aerosols J. Vanderlei Martins, Paulo Artaxo, Yoram Kaufman,
GE0-CAPE Workshop University of North Carolina-Chapel Hill August 2008 Aerosols: What is measurable and by what remote sensing technique? Omar Torres.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
POLAR MULTI-SENSOR AEROSOL PROPERTIES OVER LAND Michael Grzegorski, Rosemary Munro, Gabriele Poli, Andriy Holdak and Ruediger Lang.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Satellite group MPI Mainz Investigating Global Long-term Data Sets of the Atmospheric H 2 O VCD and of Cloud Properties.
1 Traffic Restrictions Associated with the Sino-African Summit: Reductions of NO x Detected from Space Yuxuan Wang, Michael B. McElroy, K. Folkert Boersma.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
SATELLITE OBSERVATIONS OF ATMOSPHERIC CHEMISTRY Daniel J. Jacob.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Harmonizationof GOME, SCIAMACHY, GOME-2 ozone cross-sections Anna Serdyuchenko, John P. Burrows, Mark Weber, Wissam Chehade University of Bremen, Germany.
SATELLITE REMOTE SENSING OF TERRESTRIAL CLOUDS Alexander A. Kokhanovsky Institute of Remote Sensing, Bremen University P. O. Box Bremen, Germany.
1 Monitoring Tropospheric Ozone from Ozone Monitoring Instrument (OMI) Xiong Liu 1,2,3, Pawan K. Bhartia 3, Kelly Chance 2, Thomas P. Kurosu 2, Robert.
Update on TROPOMI instrument and status Pepijn Veefkind, Diego Loyola, Andreas Richter, Ilse Aben, Michel van Roozendael, Isabelle De Smedt, Richard Siddans,
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
Monitoring of sulphur dioxide emissions from satellite as part of GSE PROMOTE Jos van Geffen, Michel Van Roozendael, Isabelle De Smedt, Caroline Fayt (BIRA-IASB)
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
Nan Feng and Sundar A. Christopher Department of Atmospheric Science
TNO Physics and Electronics Laboratory    J. Kusmierczyk-Michulec G. de Leeuw.
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
1 SO 2 Air Mass Factors for pollution and volcanic emissions OMI Science Team Meeting De Bilt, June 2006 Pieter Valks, Werner Thomas, Thilo Ebertseder,
Fourth TEMPO Science Team Meeting
DOAS workshop 2015, Brussels, July 2015
UV/VIS backscattered Sun light retrievals from space born platforms
V2.0 minus V2.5 RSAS Tangent Height Difference Orbit 3761
Near UV aerosol products
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Need for TEMPO-ABI Synergy
GSICS UV sub-group: GOME-2 hyper-spectral radiances for calibration of imager data Rűdiger Lang, Rose Munro, Gabriele Poli, Antoine Lacan, Christian Retscher,
X. Liu1, C.E. Sioris1,2, K. 11/14/2018 Ozone Profile and Tropospheric Ozone Retrieval from SCIAMACHY Nadir Measurements:
GOME-2 hyper-spectral reflectance measurements: Inter-comparison with AVHRR and Seviri Rűdiger Lang, Rose Munro, Antoine Lacan, Christian Retscher, Gabriele.
The Successor of the TOU
Hyperspectral radiation: measurements and modelling
Chris Sioris Kelly Chance
Scientist, Gamer, Fighter
Preliminary SCIAMACHY Lunar observations as intercalibration source
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
MEASUREMENT OF TROPOSPHERIC COMPOSITION FROM SPACE IS DIFFICULT!
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

1 Aerosol information from the UV-visible spectrometer GOME-2 Piet Stammes, KNMI, De Bilt, The Netherlands 7 November 2012

2 Contents Importance of aerosols Aerosol microphysics Spectral absorption by aerosols GOME-2 Absorbing Aerosol Index First results on Aerosol Height Acknowledgements to: Martin de Graaf, Gijs Tilstra, Ping Wang, Olaf Tuinder (KNMI) Eyk Boesche (FUB) Marloes Penning de Vries (MPIC)

3 weak events strong events Smoke and Dust Amazonian rainforest biomass burning Sahel biomass burning and desert dust storms Desert dust Sahara Bodélé Libian desert Saudi Arabian lowlands Thar desert Taklamakan desert Indonesian forest fires Siberian forest fires in July 2006 Californian forest fires Canadian and Alaskan forest fires June-July 2004 biomass burning smoke Smoke from forest fires Rice straw burning biomass burning smoke more data and information can be found at Absorbing Aerosol Index map from SCIAMACHY

4 Why are aerosols important? ©IPCC 2007 ClimateAir quality / Health Air traffic safety Visibility

5 Many aerosol types: chemical compositions, sizes and shapes

6 Dust aerosols ©nasa earthobservatory Sahara dust event Size distribution - Fine mode aerosols: around 0.1 micron - Coarse mode aerosols: around 1 micron Absorbing aerosols: Desert dust Smoke Volcanic ash

7 Absorption by smoke above clouds De Graaf et al., JGR, 2012 Observation by SCIAMACHY of absorption spectrum of smoke aerosols. This absorption leads to heating of the troposphere up to 125 W/m2.

8 GOME-2 on Metop since 2006 UV-visible-near-IR spectrometer 4 spectral channels, covering nm nm resolution Polarization Monitoring Devices (PMDs) at 15 bands Main products: ozone, NO2, SO2, minor gases Additional products: aerosols, clouds, surface albedo

9 Pixel size of GOME-2 w.r.t. other sensors GOME(-1) ERS-2 GOME-2 Metop-A+B SCIAMACHY Envisat OMI EOS-Aura 40 km 320 km 30 km 60 km 40 km 80 km 13 km 24 km Along track 40 km 10 km GOME-2 PMD

10 Absorbing Aerosol Index (AAI) Definition: where the surface albedo A for the Rayleigh atmosphere simulations is such that: A is assumed to be wavelength independent: A 340 = A 380 The residue represents the observed 340/380 nm colour as compared to the pure Rayleigh colour (OMI: 354/388 nm) residue AAI is the positive part of the residue

11 Reflectance at TOA with absorbing aerosols Doubling-Adding KNMI Radiative Transfer Model Solar zenith angle = 30° Viewing zenith angle = 0° Surface albedo = 5% Absorbing aerosols: altitude = 3-4 km optical thickness  = 2 single scattering albedo  0 = 0.75

12 To match the reflectance in the absorbing aerosol atmosphere at 380 nm, the surface albedo is decreased in the Rayleigh atmosphere: Rayleigh atmosphere Surface albedo = 0.6% Reflectance at TOA with absorbing aerosols and matched Rayleigh reflectance As Match at reference wavelength

13 Reflectance at TOA with absorbing aerosols and matched Rayleigh reflectance The curves don’t match at 340 nm: Absorbing aerosols create a positive residue. Residue As

14 Generally: no clouds, no aerosols: r = 0 clouds, no absorbing aerosols: r < 0 absorbing aerosols : r > 0 AAI: r > 0 Pros and Cons: + AAI can detect UV absorbing aerosols: volcanic ash, desert dust and smoke. + AAI works in cloudy scenes. + AAI works over ocean and land. - AAI is an index: it depends on AOT (  ), SSA (  ) and altitude (  ). - AAI is very sensitive to absolute calibration.

15 Simulations of AAI for biomass burning aerosols Clear-sky caseCloudy case AAI increases with AOT AAI decreases with SZA Nadir view Aerosols at 4-5 km Clouds at 1-2 km DAK RTM simulations Wang et al., ACP, 2012

16 Daily AAI map of GOME-2 spectral channels

17 Daily AAI map from GOME-2 PMDs PMDs have 8x higher spatial resolution than the spectral channels

18 Information for the VAAC (volcanic ash advisory centre) Eyjafjoll- eruption of April-May 2010

19 Smoke over Borneo from AAI, /1998 El Niño: drought caused many forest fires; km 2 forest burned. Satellite data sources: GOME, SCIAMACHY, GOME-2 Figure: L.G. Tilstra, KNMI

20 UV residue has two parts: Absorbing Index & Scattering Index GOME-2 Aerosol Indices for July, 2011, cloud fraction < 0.2. Work of Marloes Penning de Vries (MPIC, Mainz). Penning de Vries et al., ACP, 2012 Penning de Vries, Visiting Scientist report of O3MSAF, 2012 Scattering aerosols and cloudsAbsorbing aerosols

21 Effect of instrument degradation on the AAI GOME-2 (for individual scan mirror positions) The global mean residue, the mean of all residues on a day between 60°N and 60°S, is about constant, showing only a very mild seasonal variation. Instrument degradation has a very large impact on the residue/AAI: 2.3 % reflectance change ~ 1 AAI point. Tilstra et al. (JGR, 2012) developed an in-flight degradation correction method.

22 Aerosol Height retrieval Approach: use cloud algorithm FRESCO for aerosol height - FRESCO algorithm: fit of O 2 A-band at 760 nm using a Lambertian reflector as cloud model. - FRESCO v6 has two retrieval modes for 2 retrieved quantities: Normal: Effective cloud fraction (cloud albedo  0.8) and Cloud height Alternative: Scene albedo (cloud fraction  1) and Scene height Wang et al., ACP, 2008

23 FRESCO retrievals using simulated O 2 A band spectra for dust aerosols Clear-sky Cloudy Cloud layer Aerosol layer Wang et al., ACP, 2012

24 Puyehue volcano (Chile), , Westerly Box Wang et al., ACP, 2012

25 Puyehue volcano (Chile), , Easterly Box Wang et al., ACP, 2012

26 Conclusions Absorbing aerosols, like desert dust, smoke, and volcanic ash can be detected by GOME-2 GOME-2 provides near-real-time monitoring information on these aerosols, with the products: -AAI for absorbing aerosols -SCI for scattering aerosols (if cloud mask is used) -FRESCO for aerosol height.

27 Links O3MSAF GOME-2 data products: TEMIS GOME-2 data products: GOME-2 and Metop: GOME-2 L0 data quality information:

28 References on GOME(-2) aerosol retrievals M. de Graaf, P. Stammes, O. Torres, and R.B.A. Koelemeijer, Absorbing Aerosol Index: Sensitivity analysis, application to GOME and comparison with TOMS, J. Geophys. Res. 110, D010201, doi: /2004JD005178, 2005.doi: /2004JD M. de Graaf, L.G. Tilstra, P. Wang and P. Stammes, Retrieval of the aerosol direct radiative effect over clouds from space-borne spectrometry, J. Geophys. Res., 117, D07207, doi: /2011JD017160, 2012doi: /2011JD M. de Graaf and P. Stammes and E.A.A. Aben, Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY, J. Geophys. Res. 112, D02206, doi: /2006JD007249, 2007.doi: /2006JD M. Penning de Vries, Beirle, S., and Wagner, T.: UV Aerosol Indices from SCIAMACHY: introducing the SCattering Index (SCI), Atmos. Chem. Phys., 9, , doi: /acp , 2009 M. Penning de Vries, and Wagner, T.: Modelled and measured effects of clouds on UV Aerosol Indices on a local, regional, and global scale, Atmos. Chem. Phys., 11, , doi: /acp , L.G. Tilstra, M. de Graaf, I. Aben and P. Stammes, In-flight degradation correction of SCIAMACHY UV reflectances and Absorbing Aerosol Index, J. Geophys. Res., 117, D06209, doi: /2011JD016957, 2012.doi: /2011JD L.G. Tilstra, M. de Graaf, O.N.E. Tuinder, R.J. van der A, and P. Stammes, Studying trends in aerosol presence using the Absorbing Aerosol Index derived from GOME-1, SCIAMACHY, and GOME-2, Proceedings of the 2011 EUMETSAT Meteorological Satellite Conference, EUMETSAT P.59, ISBN , 2011.Studying trends in aerosol presence using the Absorbing Aerosol Index derived from GOME-1, SCIAMACHY, and GOME-2 L.G. Tilstra, O.N.E. Tuinder, and P. Stammes, A new method for in-flight degradation correction of GOME-2 Earth reflectance measurements, with application to the Absorbing Aerosol Index, Proceedings of the 2012 EUMETSAT Meteorological Satellite Conference, EUMETSAT P.??, ISBN ??????????, 2012.A new method for in-flight degradation correction of GOME-2 Earth reflectance measurements, with application to the Absorbing Aerosol Index P. Wang, P. Stammes, R. van der A, G. Pinardi, M. van Roozendael, FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals, Atmospheric Chemistry and Physics, 8, , 2008 P. Wang, O.N.E. Tuinder, L.G. Tilstra, M. de Graaf, and P. Stammes, Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events, Atm. Chem. Phys., 12, doi: /acp , 2012.doi: /acp

29 Back-up slides

30 Wavelength pair (nm) Equator crossing time Pixel size (km) Days needed for global coverage Platform / Operation period GOME–1 340 / : 30 LT320 × 403 ERS-2 (1995 – 2003*) SCIAMACHY 340 / : 00 LT60 × 306 Envisat (2002 – 2012) GOME–2 340 / : 30 LT80 × MetOp-A (2006 – present) OMI 354 / : 30 LT13 × 241 Aura (2004 – present) AAI products from GOME, SCIAMACHY, GOME-2, and OMI * GOME-1: loss of global coverage on 22 June 2003 ; instrument retired on 4 July 2011

31 FRESCO retrievals using simulated O 2 A band spectra for biomass burning aerosols Clear-sky Cloudy Aerosol layer Cloud layer Wang et al., ACP, 2012

Australian Wildfires Feb 7 th – Feb 12 th 2009 Figure: O. Tuinder, KNMI