Informed search algorithms

Slides:



Advertisements
Similar presentations
Informed search algorithms
Advertisements

Informed search algorithms
Informed Search Algorithms
Local Search Algorithms
Informed search algorithms
An Introduction to Artificial Intelligence
Problem Solving: Informed Search Algorithms Edmondo Trentin, DIISM.
Informed search algorithms
Solving Problem by Searching
1 Heuristic Search Chapter 4. 2 Outline Heuristic function Greedy Best-first search Admissible heuristic and A* Properties of A* Algorithm IDA*
Artificial Intelligence Spring 2009
Problem Solving by Searching
CSC344: AI for Games Lecture 5 Advanced heuristic search Patrick Olivier
SE Last time: Problem-Solving Problem solving: Goal formulation Problem formulation (states, operators) Search for solution Problem formulation:
Informed search algorithms
Artificial Intelligence
CS 460 Spring 2011 Lecture 3 Heuristic Search / Local Search.
Trading optimality for speed…
CSC344: AI for Games Lecture 4: Informed search
CS 561, Session 6 1 Last time: Problem-Solving Problem solving: Goal formulation Problem formulation (states, operators) Search for solution Problem formulation:
Rutgers CS440, Fall 2003 Heuristic search Reading: AIMA 2 nd ed., Ch
Informed search algorithms
INTRODUÇÃO AOS SISTEMAS INTELIGENTES Prof. Dr. Celso A.A. Kaestner PPGEE-CP / UTFPR Agosto de 2011.
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search.
Informed search algorithms
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search.
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics.
1 Shanghai Jiao Tong University Informed Search and Exploration.
Informed search algorithms Chapter 4. Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most.
ISC 4322/6300 – GAM 4322 Artificial Intelligence Lecture 3 Informed Search and Exploration Instructor: Alireza Tavakkoli September 10, 2009 University.
CS 380: Artificial Intelligence Lecture #4 William Regli.
Informed search strategies Idea: give the algorithm “hints” about the desirability of different states – Use an evaluation function to rank nodes and select.
Informed searching. Informed search Blind search algorithms do not consider any information about the states and the goals Often there is extra knowledge.
Iterative Improvement Algorithm 2012/03/20. Outline Local Search Algorithms Hill-Climbing Search Simulated Annealing Search Local Beam Search Genetic.
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms Hill-climbing search.
Chapter 4 Informed/Heuristic Search
Review: Tree search Initialize the frontier using the starting state While the frontier is not empty – Choose a frontier node to expand according to search.
Local Search Pat Riddle 2012 Semester 2 Patricia J Riddle Adapted from slides by Stuart Russell,
Princess Nora University Artificial Intelligence Chapter (4) Informed search algorithms 1.
CSC3203: AI for Games Informed search (1) Patrick Olivier
CS 312: Algorithm Design & Analysis Lecture #37: A* (cont.); Admissible Heuristics Credit: adapted from slides by Stuart Russell of UC Berkeley. This work.
Informed Search and Heuristics Chapter 3.5~7. Outline Best-first search Greedy best-first search A * search Heuristics.
4/11/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 4, 4/11/2005 University of Washington, Department of Electrical Engineering Spring 2005.
A General Introduction to Artificial Intelligence.
Feng Zhiyong Tianjin University Fall  Best-first search  Greedy best-first search  A * search  Heuristics  Local search algorithms  Hill-climbing.
Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most desirable unexpanded node Implementation:
Informed search algorithms Chapter 4 Slides derived in part from converted to powerpoint by Min-Yen.
Announcement "A note taker is being recruited for this class. No extra time outside of class is required. If you take clear, well-organized notes, this.
Informed Search II CIS 391 Fall CIS Intro to AI 2 Outline PART I  Informed = use problem-specific knowledge  Best-first search and its variants.
Informed Search CSE 473 University of Washington.
Searching for Solutions
Local Search Algorithms and Optimization Problems
Chapter 3.5 and 3.6 Heuristic Search Continued. Review:Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 5 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
Constraints Satisfaction Edmondo Trentin, DIISM. Constraint Satisfaction Problems: Local Search In many optimization problems, the path to the goal is.
Local search algorithms In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution State space = set of "complete"
Chapter 3.5 Heuristic Search. Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
Last time: Problem-Solving
Local Search Algorithms
Discussion on Greedy Search and A*
Discussion on Greedy Search and A*
CS 4100 Artificial Intelligence
Artificial Intelligence Informed Search Algorithms
Informed search algorithms
Informed search algorithms
Artificial Intelligence
Artificial Intelligence
Solving Problems by Searching
Informed Search.
Local Search Algorithms
Presentation transcript:

Informed search algorithms Chapter 4

Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Simulated annealing search Local beam search Genetic algorithms

Best-first search Idea: use an evaluation function f(n) for each node estimate of "desirability" Expand most desirable unexpanded node Implementation: Order the nodes in fringe in decreasing order of desirability Special cases: greedy best-first search A* search

Best-first search Idea: use an evaluation function for each node; estimate of “desirability” expand most desirable unexpanded node. Implementation: QueueingFn = insert successors in decreasing order of desirability Special cases: greedy search A* search

Romania with step costs in km 374 253 329

Greedy search Estimation function: h(n) = estimate of cost from n to goal (heuristic) For example: hSLD(n) = straight-line distance from n to Bucharest Greedy search expands first the node that appears to be closest to the goal, according to h(n).

Greedy best-first search Evaluation function f(n) = h(n) (heuristic) = estimate of cost from n to goal e.g., hSLD(n) = straight-line distance from n to Bucharest Greedy best-first search expands the node that appears to be closest to goal

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Properties of greedy best-first search Complete? No – can get stuck in loops, e.g., Iasi  Neamt  Iasi  Neamt  Time? O(bm), but a good heuristic can give dramatic improvement Space? O(bm) -- keeps all nodes in memory Optimal? No

A* search Idea: avoid expanding paths that are already expensive Evaluation function f(n) = g(n) + h(n) g(n) = cost so far to reach n h(n) = estimated cost from n to goal f(n) = estimated total cost of path through n to goal

A* search example

A* search example

A* search example

A* search example

A* search example

A* search example

Admissible heuristics A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n. An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic Example: hSLD(n) (never overestimates the actual road distance) Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Optimality of A* (proof) Suppose some suboptimal goal G2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G. f(G2) = g(G2) since h(G2) = 0 g(G2) > g(G) since G2 is suboptimal f(G) = g(G) since h(G) = 0 f(G2) > f(G) from above

Optimality of A* (proof) Suppose some suboptimal goal G2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G. f(G2) > f(G) from above h(n) ≤ h^*(n) since h is admissible g(n) + h(n) ≤ g(n) + h*(n) f(n) ≤ f(G) Hence f(G2) > f(n), and A* will never select G2 for expansion

Consistent heuristics A heuristic is consistent if for every node n, every successor n' of n generated by any action a, h(n) ≤ c(n,a,n') + h(n') If h is consistent, we have f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') ≥ g(n) + h(n) = f(n) i.e., f(n) is non-decreasing along any path. Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A* A* expands nodes in order of increasing f value Gradually adds "f-contours" of nodes Contour i has all nodes with f=fi, where fi < fi+1

Properties of A$^*$ Complete? Yes (unless there are infinitely many nodes with f ≤ f(G) ) Time? Exponential Space? Keeps all nodes in memory Optimal? Yes

Admissible heuristics E.g., for the 8-puzzle: h1(n) = number of misplaced tiles h2(n) = total Manhattan distance (i.e., no. of squares from desired location of each tile) h1(S) = ? h2(S) = ?

Admissible heuristics E.g., for the 8-puzzle: h1(n) = number of misplaced tiles h2(n) = total Manhattan distance (i.e., no. of squares from desired location of each tile) h1(S) = ? 8 h2(S) = ? 3+1+2+2+2+3+3+2 = 18

Dominance If h2(n) ≥ h1(n) for all n (both admissible) then h2 dominates h1 h2 is better for search Typical search costs (average number of nodes expanded): d=12 IDS = 3,644,035 nodes A*(h1) = 227 nodes A*(h2) = 73 nodes d=24 IDS = too many nodes A*(h1) = 39,135 nodes A*(h2) = 1,641 nodes

Relaxed problems A problem with fewer restrictions on the actions is called a relaxed problem The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h1(n) gives the shortest solution If the rules are relaxed so that a tile can move to any adjacent square, then h2(n) gives the shortest solution

Iterative improvement In many optimization problems, path is irrelevant; the goal state itself is the solution. Then, state space = space of “complete” configurations. Algorithm goal: - find optimal configuration (e.g., TSP), or, - find configuration satisfying constraints (e.g., n-queens) In such cases, can use iterative improvement algorithms: keep a single “current” state, and try to improve it.

Iterative improvement example: vacuum world Simplified world: 2 locations, each may or not contain dirt, each may or not contain vacuuming agent. Goal of agent: clean up the dirt. If path does not matter, do not need to keep track of it.

Iterative improvement example: n-queens Goal: Put n chess-game queens on an n x n board, with no two queens on the same row, column, or diagonal. Here, goal state is initially unknown but is specified by constraints that it must satisfy.

Local search algorithms In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution State space = set of "complete" configurations Find configuration satisfying constraints, e.g., n-queens In such cases, we can use local search algorithms keep a single "current" state, try to improve it

Example: n-queens Put n queens on an n × n board with no two queens on the same row, column, or diagonal

Hill-climbing search "Like climbing Everest in thick fog with amnesia"

Hill-climbing search Problem: depending on initial state, can get stuck in local maxima

Minimizing energy Let’s now change the formulation of the problem a bit, so that we can employ new formalism: - let’s compare our state space to that of a physical system that is subject to natural interactions, - and let’s compare our value function to the overall potential energy E of the system. On every updating, we have DE  0

Minimizing energy Hence the dynamics of the system tend to move E toward a minimum. We stress that there may be different such states — they are local minima. Global minimization is not guaranteed.

Local Minima Problem Question: How do you avoid this local minima? barrier to local search starting point descend direction local minima global minima

Consequences of the Occasional Ascents desired effect Help escaping the local optima. adverse effect (easy to avoid by keeping track of best-ever state) Might pass global optima after reaching it

Hill-climbing search: 8-queens problem h = number of pairs of queens that are attacking each other, either directly or indirectly h = 17 for the above state

Hill-climbing search: 8-queens problem A local minimum with h = 1

Simulated annealing search Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

Properties of simulated annealing search One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1 Widely used in VLSI layout, airline scheduling, etc

Local beam search Keep track of k states rather than just one Start with k randomly generated states At each iteration, all the successors of all k states are generated If any one is a goal state, stop; else select the k best successors from the complete list and repeat.

Genetic algorithms A successor state is generated by combining two parent states Start with k randomly generated states (population) A state is represented as a string over a finite alphabet (often a string of 0s and 1s) Evaluation function (fitness function). Higher values for better states. Produce the next generation of states by selection, crossover, and mutation

Genetic algorithms Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28) 24/(24+23+20+11) = 31% 23/(24+23+20+11) = 29% etc

Genetic algorithms