AP Biology Horizontal gene transfer Transmission of DNA between species  Transformation  Transduction  Conjugation.

Slides:



Advertisements
Similar presentations
Two ways to Regulate a Metabolic Pathway
Advertisements

2 Bacterial Genetic Recombination What is the main source of genetic recombination in bacteria? Mutations What are the other sources of recombination?
AP Biology Control of Prokaryotic (Bacterial) Genes.
Ch 18 Gene Regulation. Consider: A multicellular organism (Pliny) Do each of his cells have the same genes? Yes, with an exception: germ cells are haploid.
DNA, AND IN SOME CASES RNA, IS THE PRIMARY SOURCE OF HERITABLE INFORMATION Noneukaryotic Genetic Information.
Chapter 18 Regulation of Gene Expression.
1. What is the Central Dogma? 2. How does prokaryotic DNA compare to eukaryotic DNA? 3. How is DNA organized in eukaryotic cells?
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 18.4: Individual bacteria respond to environmental change by regulating.
AP Biology GENE REGULATION s lide shows by Kim Foglia modified Slides with blue edges are Kim’s.
AP Biology Chapter 18: Gene Regulation. Regulation of Gene Expression Important for cellular control and differentiation. Understanding “expression” is.
The Chapter 15 Homework is due on Wednesday, February 4 th at 11:59 pm.
Operons. Big picture Prokaryotic control of genome expression Prokaryotic control of genome expression 2 levels of control 2 levels of control  Change.
Bacterial Operons A model of gene expression regulation Ch 18.4.
OPERONS: BACTERIAL GENE CONTROL. OPERONS Bacterial cells A group of genes that work together Illustrate how genes expression (“on”) and repression (“off”)
AP Biology Control of Prokaryotic (Bacterial) Genes.
AP Biology Chapter 18 Regulation of Gene Expression.
AP Biology Chapter 18. Bacterial Genetics.
Draw 8 boxes on your paper
AP Biology Chapter 18. I can describe how genetic variation occurs in bacteria.
AP Biology D.N.A A student uses restriction enzymes to cut a DNA molecule into fragments. The digested DNA is loaded into the wells of an agarose gel.
Bacterial Gene Expression and Regulation
Gene Regulation, Part 1 Lecture 15 Fall Metabolic Control in Bacteria Regulate enzymes already present –Feedback Inhibition –Fast response Control.
Prokaryotes and Eukaryotes
AP Biology Control of Prokaryotic (Bacterial) Genes.
AP Biology April 12, 2012 BellRinger Quiz  Identify and describe the 3 main parts of an operon Objective  Explain prokaryotic and eukaryotic gene regulation.
AP Biology Control of Prokaryotic (Bacterial) Genes.
Chapter 13 Bacterial Genetics Why study bacterial genetics? Its an easy place to start  history  we know more about it systems better understood 
AP Biology Control of Prokaryotic (Bacterial) Genes Monday, 1/28/13.
Control of Prokaryotic (Bacterial) Genes (Ch. 18)
AP Biology Control of Prokaryotic (Bacterial) Genes.
Gene Regulation Bacterial metabolism Need to respond to changes – have enough of a product, stop production waste of energy stop production.
AP Biology Chapter 18. Bacterial Genetics.
AP Biology Control of Prokaryotic (Bacterial) Genes.
OPERONS – GENES THAT CODE FOR ENZYMES ON THE SAME PATHWAY ARE REGULATED AS A GROUP.
OPERONS * Indicated slides borrowed from: Kim Foglia
Control of Prokaryotic (Bacterial) Genes
Regulation of Gene Expression
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
End of Ch. 17: Mutations
Control of Prokaryotic (Bacterial) Genes
GENE REGULATION Unit 5B
Control of Prokaryotic (Bacterial) Genes
Gene Expression.
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes Different from Eukaryotes!
Chapter 15 Operons.
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Chapter 18 Bacterial Regulation of Gene Expression
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Presentation transcript:

AP Biology Horizontal gene transfer Transmission of DNA between species  Transformation  Transduction  Conjugation

AP Biology Transposons Transposable elements Can move around within a cells genome Jumping genes Contribute to genetic shuffling in bacteria Contribute to antibiotic resistnace

AP Biology Bacterial metabolism Bacteria need to respond quickly to changes in their environment  if they have enough of a product, need to stop production why? waste of energy to produce more how? stop production of enzymes for synthesis  if they find new food/energy source, need to utilize it quickly why? metabolism, growth, reproduction how? start production of enzymes for digestion STOP GO

AP Biology Different way to Regulate Metabolism Gene regulation  instead of blocking enzyme function, block transcription of genes for all enzymes in tryptophan pathway saves energy by not wasting it on unnecessary protein synthesis = inhibition - - -

AP Biology Bacteria group genes together Operon  genes grouped together with related functions example: all enzymes in a metabolic pathway  promoter = RNA polymerase binding site single promoter controls transcription of all genes in operon transcribed as one unit & a single mRNA is made  operator = DNA binding site of repressor protein (on/off switch)

AP Biology So how can these genes be turned off? Repressor protein  binds to DNA at operator site  blocking RNA polymerase  blocks transcription

AP Biology operatorpromoter Operon model DNATATA RNA polymerase repressor = repressor protein Operon: operator, promoter & genes they control serve as a model for gene regulation gene1gene2gene3gene4 RNA polymerase Repressor protein turns off gene by blocking RNA polymerase binding site mRNA enzyme1enzyme2enzyme3enzyme4

AP Biology mRNA enzyme1enzyme2enzyme3enzyme4 operatorpromoter Repressible operon: tryptophan DNATATA RNA polymerase tryptophan repressor repressor protein repressor tryptophan – repressor protein complex Synthesis pathway model When excess tryptophan is present, it binds to tryp repressor protein & triggers repressor to bind to DNA  blocks (represses) transcription gene1gene2gene3gene4 conformational change in repressor protein! 1234 repressor trp RNA polymerase trp

AP Biology Tryptophan operon What happens when tryptophan is present? Don’t need to make tryptophan-building enzymes Tryptophan is allosteric regulator of repressor protein

AP Biology mRNA enzyme1enzyme2enzyme3enzyme4 operatorpromoter Inducible operon: lactose DNATATA RNA polymerase repressor repressor protein repressor lactose – repressor protein complex lactose lac repressor gene1gene2gene3gene4 Digestive pathway model When lactose is present, binds to lac repressor protein & triggers repressor to release DNA  induces transcription RNA polymerase 1234 lac conformational change in repressor protein! lac

AP Biology Lactose operon What happens when lactose is present? Need to make lactose-digesting enzymes Lactose is allosteric regulator of repressor protein

AP Biology cAMP and CAP cAMP accumulates when glucose is scarce CAP activates and binds to DNA  Stimulates transcription

AP Biology cAMP and CAP High glucose levels  concentration of cAMP goes down Without cAMP, CAP detaches from operon CAP becomes inactive and polymerase binds less  Low transcription rate

AP Biology

Cellular Condition Effector Molecule Regulatory Protein ResultOutcome Glucose absent; lactose used High cAMPCatabolic activator protein (CAP) Activation of CAP Binds to CAP site, transcription of lac genes Glucose present; lactose not needed Low cAMPCAPInactivation of CAP Cannot bind to CAP site, no transcription of genes No lactoseNo allolactoseLac repressorActivation of lac repressor Binds to operator site, prevents transcription Lactose presentAllolactose protesent Lac repressorInactivation of lac repressor Prevents repressor from binding, transcription of lac genes

AP Biology Operon summary Repressible operon  usually functions in anabolic pathways synthesizing end products  when end product is present in excess, cell allocates resources to other uses Inducible operon  usually functions in catabolic pathways, digesting nutrients to simpler molecules  produce enzymes only when nutrient is available cell avoids making proteins that have nothing to do, cell allocates resources to other uses