Biology Chapter 12 Section 5 Gene Regulation. Objectives ______________a typical gene _________how lac genes are turned off and on __________how most.

Slides:



Advertisements
Similar presentations
Copyright Pearson Prentice Hall
Advertisements

Gene Regulation and Expression
Regulating Gene Expression Turning Genes On and Off.
Gene Regulation Section 12–5
Foothill High School Science Department DNA & RNA Gene Regulation.
Section 12 – 5 Gene Regulation
1 Review What genes control cell differentiation during development Compare and Contrast How is the way Hox genes are expressed in mice similar and different.
Slide 1 of 26 Copyright Pearson Prentice Hall 12-5 Gene Regulation Fruit fly chromosome Fruit fly embryo Adult fruit fly Mouse chromosomes Mouse embryo.
12-5 Gene Regulation.
AP Biology Chapter 18: Gene Regulation. Regulation of Gene Expression Important for cellular control and differentiation. Understanding “expression” is.
Four of the many different types of human cells: They all share the same genome. What makes them different?
Section 8.6: Gene Expression and Regulation
How Does A Cell Know? Which Gene To Express Which Gene To Express& Which Gene Should Stay Silent? Which Gene Should Stay Silent?
Gene Regulation Section 12–5
Control of gene expression Unit but different cells have different functions and look and act differently! WHY? Different sets of genes are expressed.
Chapter 11 Table of Contents Section 1 Control of Gene Expression
Gene Expression and Regulation
Chapter 11 Table of Contents Section 1 Control of Gene Expression
Gene Regulation An expressed gene is one that is transcribed into RNA
End Show Slide 1 of 26 Copyright Pearson Prentice Hall 12-5 Gene Regulation Fruit fly chromosome Fruit fly embryo Adult fruit fly Mouse chromosomes Mouse.
12.5 Gene Regulation. 1. Gene Regulation In any organism, only a few genes are expressed at each time Operon: group of genes that operate together Scientists.
Gene Regulation How does your body know when to make certain proteins? Unit 4 – Chapter 12-5.
Section 2 CHAPTER 10. PROTEIN SYNTHESIS IN PROKARYOTES Both prokaryotic and eukaryotic cells are able to regulate which genes are expressed and which.
12-4 MUTATIONS. Mutations – changes in the DNA sequence that affect genetic information Gene mutations result from changes in a single gene. Chromosomal.
How Does A Cell Know? Which Gene To Express Which Gene To Express& Which Gene Should Stay Silent? Which Gene Should Stay Silent?
Gene Regulation in Prokaryotes - plasmid, not protected by nuclear envelope - DNA is not bound up with histones -One of the best known pathways is the.
Gene Regulation and Expression. Learning Objectives  Describe gene regulation in prokaryotes.  Explain how most eukaryotic genes are regulated.  Relate.
Gene Expression and Regulation
Prokaryotic cells turn genes on and off by controlling transcription.
Welcome  In your journal write a paragraph explain what is a gene and what is gene expression?  Notes on Gene Expression Regulation  Quiz over.
Eukaryotic Gene Regulation
KEY CONCEPT Gene expression is carefully regulated in both prokaryotic and eukaryotic cells. Chapter 11 – Gene Expression.
Chapter 13: Gene Regulation. The Big Picture… A cell contains more genes than it expresses at any given time – why? Why are cells in multicellular organisms.
Gene Expression & Regulation Chapter 8.6. KEY CONCEPT Gene expression is carefully regulated in both prokaryotic and eukaryotic cells.
DNA & RNA Gene Expression and Regulation Gene Regulation How Does A Cell Know? Which Gene To Express Which Gene To Express& Which Gene Should Stay Silent?
FOOTHILL HIGH SCHOOL SCIENCE DEPARTMENT Chapter 12 DNA & RNA Section 12 – 5 Gene Regulation.
6D – Recognize that a gene expression is a regulated process.
Eukaryotic Gene Regulation
How does your body know when to make proteins? Unit 4 – Chapter 12-5
GENE REGULATION
12-5 Gene Regulation Pages 309 – 312 Block 1 Baker.
Gene Regulation.
Transcriptional Regulation
Prokaryotic cells turn genes on and off by controlling transcription.
Prokaryotic cells turn genes on and off by controlling transcription.
Chapter 12.5 Gene Regulation.
The Operon Hypothesis The Operon Hypothesis was developed by 2 researchers: Jacob and Monod It explains how genes are regulated in prokaryotes. They received.
Gene regulation Section Pages
Bellwork: How is gene regulation in prokaryotes and Eukaryotes similar
Copyright Pearson Prentice Hall
Gene Regulation Section 12–5
12-5 Gene Regulation.
Prokaryotic cells turn genes on and off by controlling transcription.
Section 14.3 Gene Expression and Regulation Part 1
Unit 7: Molecular Genetics
Copyright Pearson Prentice Hall
Prokaryotic cells turn genes on and off by controlling transcription.
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Prokaryotic (Bacterial) Gene Regulation
Gene Mutations.
Prokaryotic cells turn genes on and off by controlling transcription.
Prokaryotic cells turn genes on and off by controlling transcription.
13.4 Gene regulation 5/16/19 TB page
Copyright Pearson Prentice Hall
Gene Regulation A gene (DNA) is expressed when it is made into a functional product (protein/enzyme)
Copyright Pearson Prentice Hall
DNA AND RNA 12-5 Gene Regulation.
Prokaryotic cells turn genes on and off by controlling transcription.
Presentation transcript:

Biology Chapter 12 Section 5 Gene Regulation

Objectives ______________a typical gene _________how lac genes are turned off and on __________how most eukaryotic genes are controlled ________gene regulation to development Describe Explain Relate

An _____________is a group of genes that operate together. In E. coli, these genes must be turned on so the bacterium can use lactose as food. Therefore, they are called the lac operon. operon

The lac genes are turned off by repressors and turned on by the presence of lactose. Many genes are regulated by repressor proteins. Some genes use ________________that speed transcription. Sometimes regulation occurs at the level of protein synthesis. proteins

Eukaryotic Gene Regulation Operons are generally ______________in eukaryotes. Most eukaryotic genes are controlled individually and have regulatory sequences that are much more complex than those of the lac operon. not found

Development and Differentiation As cells grow and divide, they undergo_________________, meaning they become specialized in structure and function. __________________control the differentiation of cells and tissues in the embryo. differentiation Hox genes