Infrared divergence of pure Einstein gravity contributions to cosmological density power spectrum J. Hwang, H. Noh, D. Jeong 1 Phys. Rev. Lett. 103, , arXiv:
Linear order: Lifshitz (1946)/Bonnor(1957) Second order: Peebles (1980)/Noh-Hwang(2004) Third order: Hwang-Noh (2005) Physical Review D, 72, (2005). Pure General Relativistic corrections (comoving-synchronous gauge) 2 Curvature perturbation in the comoving gauge ~10 -5 (K=0, comoving gauge)
General relativistic contributions to second-order power spectrum: Pure General Relativistic contribution! Relativistic/Newtonian 4
Density power spectrum to second-order: Physical Review D, 77, (2008) Pure General Relativistic corrections P 13,Einstein Newtonian P 22 + P 13,Newton K=0 = Λ: 5
P 13,Einstein P 22 P 11 P 13,Newton 7 Phys. Rev. Lett. 103, , arXiv:
Dashed line: negative P 13,Einstein P 22 P 11 P 13,Newton P Total P 22 + P 13,Newton 9 Phys. Rev. Lett. 103, , arXiv:
P 13,Einstein Large-scale limit (k →0, r →∞ ): P 13,Newton Leading order Newton Next-to-leading order Newton 10
In the large scale we discover an infrared divergence in the next-to-leading-order power spectrum due to pure Einstein gravity contribution appearing in the third-order perturbation. Despite cancellations of the leading-order and next-to-leading order terms in P 13,Newton, no such cancellations occur in P 13,Einstein. 11
P 13,Einstein P 13,Newton Leading order Newton Next-to-leading order Newton 12
P 13,Einstein Small-scale limit (k →∞, r →0 ): P 13,Newton Leading order, Einstein Next-to-leading order, Einstein Leading order, Newton 13 P 22
In the small-scale the Einstein's gravity contribution is still negligibly small. Due to cancellation of the leading-order and next-to-leading order terms in P 13,Einstein, despite a cancellation between P 22 in P 13,Newton. 14
P 13,Einstein P 13,Newton Leading order Einstein Next-to-leading order Einstein 15
16