LAW OF SINES: THE AMBIGUOUS CASE. Review Identify if the given oblique triangle can be solved using the Law of Sines or the Law of Cosines 1. X = 21 0,

Slides:



Advertisements
Similar presentations
LAW OF SINES: THE AMBIGUOUS CASE. MENTAL DRILL Identify if the given oblique triangle can be solved using the Law of Sines or the Law of Cosines 1. X.
Advertisements

Solution of Triangles SINE RULE. 22 angle dan 1 side are given e.g  A = 60 ,  B = 40  and side b = 8 cm then, side a & side c can be found using.
Math 20: Foundations FM20.5 Demonstrate understanding of the cosine law and sine law (including the ambiguous case). D. The Trigonometric Legal Department.
Solve SAA or ASA Triangles Solve SSA Triangles Solve Applied Problems
Chapter 6 – Trigonometric Functions: Right Triangle Approach
Math III Accelerated Chapter 13 Trigonometric Ratios and Functions 1.
Module 8 Lesson 5 Oblique Triangles Florben G. Mendoza.
FUNCTIONS OF ANY ANGLE, OBLIQUE TRIANGLES
Math 112 Elementary Functions Section 1 The Law of Sines Chapter 7 – Applications of Trigonometry.
Assignment Trig Ratios III Worksheets (Online) Challenge Problem: Find a formula for the area of a triangle given a, b, and.
The Law of SINES.
Triangles- The Ambiguous Case Lily Yang Solving Triangles If you are given: Side-Side-Side (SSS) or Side-Angle-Side (SAS), use the Law of Cosines.
Copyright © Cengage Learning. All rights reserved. 6 Additional Topics in Trigonometry.
The Law of SINES. When Do I use Law of Sines vs. Law of Cosine ? Two sides One opposite angle given Angle opposite side Two angles One opposite side given.
Law of Sines. Triangles Review Can the following side lengths be the side lengths of a triangle?
13.4 L AW OF S INES 13.5 L AW OF COSINES Algebra II w/ trig.
Law of Sines
Law of Sines & Law of Cosines
Triangle Warm-up Can the following side lengths be the side lengths of a triangle?
9.5 Apply the Law of Sines When can the law of sines be used to solve a triangle? How is the SSA case different from the AAS and ASA cases?
The Ambiguous Case for the Law of Sines
Copyright © 2009 Pearson Addison-Wesley Applications of Trigonometry and Vectors.
6.1 Law of Sines Objective To use Law of Sines to solve oblique triangles and to find the areas of oblique triangles.
Law of Sines Lesson Working with Non-right Triangles  We wish to solve triangles which are not right triangles B A C a c b h.
Section 6.1. Law of Sines Use the Law of Sines when given: Angle-Angle-Side (AAS) Angle-Side-Angle (ASA) Side-Side-Angle (SSA)
LAW OF SINES: THE AMBIGUOUS CASE MENTAL DRILL Identify if the given oblique triangle can be solved using the Law of Sines or the Law of Cosines 1.
5.5 Law of Sines. I. Law of Sines In any triangle with opposite sides a, b, and c: AB C b c a The Law of Sines is used to solve any triangle where you.
6.1 Law of Sines. Introduction Objective: Solve oblique triangles To solve: you must know the length of one side and the measures of any two other parts.
If none of the angles of a triangle is a right angle, the triangle is called oblique. All angles are acute Two acute angles, one obtuse angle.
Notes Over 8.1 Solving Oblique Triangles To solve an oblique triangle, you need to be given one side, and at least two other parts (sides or angles).
Sec. 5.5 Law of sines.
Chapter 6.  Use the law of sines to solve triangles.
Notes: Law of Sines Ambiguous Cases
EXAMPLE 2 Solve the SSA case with one solution Solve ABC with A = 115°, a = 20, and b = 11. SOLUTION First make a sketch. Because A is obtuse and the side.
6.1 Law of Sines If ABC is an oblique triangle with sides a, b, and c, then A B C c b a.
Lesson 6.5 Law of Cosines. Solving a Triangle using Law of Sines 2 The Law of Sines was good for: ASA- two angles and the included side AAS- two angles.
Section 4.2 – The Law of Sines. If none of the angles of a triangle is a right angle, the triangle is called oblique. An oblique triangle has either three.
Copyright © Cengage Learning. All rights reserved. 6 Additional Topics in Trigonometry.
Law of Sines AAS ONE SOLUTION SSA AMBIGUOUS CASE ASA ONE SOLUTION Domain error NO SOLUTION Second angle option violates triangle angle-sum theorem ONE.
EXAMPLE 1 Solve a triangle for the AAS or ASA case Solve ABC with C = 107°, B = 25°, and b = 15. SOLUTION First find the angle: A = 180° – 107° – 25° =
Sullivan Algebra and Trigonometry: Section 9.2 Objectives of this Section Solve SAA or ASA Triangles Solve SSA Triangles Solve Applied Problems.
Pre calculus Problem of the Day Homework p. p odds, odds Find the area of a triangle with the given dimensions. r = 15 in s = 13 in t.
8-5 The Law of Sines Objective: To apply the Law of Sines Essential Understanding : If you know the measures of two angles and the length of a side(AAS.
Math 20-1 Chapter 1 Sequences and Series 2.3B The Ambiguous Case of the Sine Law The Sine Law State the formula for the Law of Sines. What specific.
Law of Sines and Law of Cosines Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 An oblique triangle is a triangle.
Additional Topics in Trigonometry
LAW of SINES.
Oblique Triangles.
If none of the angles of a triangle is a right angle, the triangle is called oblique. All angles are acute Two acute angles, one obtuse angle.
Digital Lesson Law of Sines.
9.1 Law of Sines.
Objective: Use the law of sine. (SSA)
6.1 Law of Sines Objectives:
Objective: To apply the Law of Sines
Law of Sines.
6-3: Law of Cosines
The Law of Sines.
Laws of Sines.
Find the missing parts of each triangle.
Law of Sines What You will learn:
50 a 28.1o Warm-up: Find the altitude of the triangle.
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Section 6.1.
Law of Sines and Cosines
Law of Sines Notes Over If ABC is a triangle with sides a, b, c, then according to the law of sines, or.
The Law of SINES.
7.2 The Law of Sines.
Law of Sines and Law of Cosines
Law of Sines (Lesson 5-5) The Law of Sines is an extended proportion. Each ratio in the proportion is the ratio of an angle of a triangle to the length.
The Law of Sines.
Presentation transcript:

LAW OF SINES: THE AMBIGUOUS CASE

Review Identify if the given oblique triangle can be solved using the Law of Sines or the Law of Cosines 1. X = 21 0, Z = 65 0 and y = s = 73.1, r = and T = a = 78.3, b = 23.5 and c = 36.8 Law of Sines Law of Cosines

Law of Sines: The Ambiguous Case Given: lengths of two sides and the angle opposite one of them (S-S-A)

AMBIGUOUS Open to various interpretations Having double meaning Difficult to classify, distinguish, or comprehend

Always set your triangle up this way…  Given angle here Side opposite here Other given side here

Possible Outcomes Case 1: If  is acute and the side opposite the given angle < the other given side. A C B b a c h = b sin A a. If a < h A C B b a c h NO SOLUTION

Possible Outcomes Case 1: If  is acute and the side opposite the given angle < the other given side. AC B b a c h = b sin A b. If a = h A C B b = a c h 1 SOLUTION

Possible Outcomes Case 1: If  is acute and the side opposite the given angle < the other given side. AC B b a c h = b sin A b. If a > h A C B b c h 2 SOLUTIONS aa B   

Possible Outcomes Case 2: If  is obtuse and the side opposite the given angle > the other given side. C A B a b c ONE SOLUTION

Possible Outcomes Case 2: If  is obtuse and the side opposite the given angle  the other given side. C A B a b c NO SOLUTION

SUMMARY  is acute or  is obtuse Side opposite < other side Side opposite > other side Side opposite < other side FIND HEIGHT: h = other side  sin  Side opposite < h: Side opposite = h: Side opposite > h: No Solution 1 Solution 2 Solutions 1 Solution No Solution

Given:  ABC where a = 22 inches b = 12 inches m  A = 42 o EXAMPLE 1 Find m  B, m  C, and c. (acute) a>b m  A > m  B SINGLE–SOLUTION CASE

sin A = sin B a b Sin B  m  B = o or 21 o Sine values of supplementary angles are equal. The supplement of  B is  B 2.  m  B 2 =159 o

m  C = 180 o – (42 o + 21 o ) m  C = 117 o sin A = sin C a c c = inches SINGLE–SOLUTION CASE

Given:  ABC where c = 15 inches b = 25 inches m  C = 85 o EXAMPLE 2 Find m  B, m  C, and c. (acute) c < b c ? b sin C 15 < 25 sin 85 o NO SOLUTION CASE

sin A = sin B a b Sin B  m  B = ? Sin B > 1 NOT POSSIBLE ! Recall: – 1  sin   1 NO SOLUTION CASE

Given:  ABC where b = 15.2 inches a = 20 inches m  B = 110 o EXAMPLE 3 Find m  B, m  C, and c. (obtuse) b < a NO SOLUTION CASE

sin A = sin B a b Sin B  m  B = ? Sin B > 1 NOT POSSIBLE ! Recall: – 1  sin   1 NO SOLUTION CASE

Given:  ABC where a = 24 inches b = 36 inches m  A = 25 o EXAMPLE 4 Find m  B, m  C, and c. (acute) a < b a ? b sin A24 > 36 sin 25 o TWO – SOLUTION CASE

sin A = sin B a b Sin B  m  B = o or 39 o The supplement of  B is  B 2.  m  B 2 = 141 o m  C 1 = 180 o – (25 o + 39 o ) m  C 1 = 116 o m  C 2 = 180 o – (25 o +141 o ) m  C 2 = 14 o

sin A = sin C a c 1 c 1 = inches sin A = sin C a c 2 c = inches

Final Answers: m  B 1 = 39 o m  C 1 = 116 o c 1 = in. EXAMPLE 3 TWO – SOLUTION CASE m  B 2 = 141 o m  C 2 = 14 o C 2 = in.

SEATWORK: (notebook) Answer in pairs. Find m  B, m  C, and c, if they exist. 1 ) a = 9.1, b = 12, m  A = 35 o 2) a = 25, b = 46, m  A = 37 o 3) a = 15, b = 10, m  A = 66 o

Answers: 1 )Case 1: m  B=49 o,m  C=96 o,c=15.78 Case 2: m  B=131 o,m  C=14 o,c=3.84 2)No possible solution. 3)m  B=38 o,m  C=76 o,c=15.93