1 Pertemuan 16 Pendugaan Parameter Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.

Slides:



Advertisements
Similar presentations
1 Pertemuan 07 Hitung Peluang Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Advertisements

Pendugaan Parameter Nilai Tengah Pertemuan 13 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Analisis Varians/Ragam Klasifikasi Dua Arah Pertemuan 18 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 11 Matakuliah: I0014 / Biostatistika Tahun: 2005 Versi: V1 / R1 Pengujian Hipotesis (I)
Pengujian Parameter Regresi Ganda Pertemuan 22 Matakuliah: L0104/Statistika Psikologi Tahun: 2008.
Pengujian Hipotesis Nilai Tengah Pertemuan 15 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Regresi dan Korelasi Linear Pertemuan 19
Peubah Acak Kontinu Pertemuan 09 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 04 Ukuran Pemusatan dan Penyebaran Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Uji Kebaikan Suai (Uji Kecocokan) Pertemuan 23
1 Pertemuan 07 Variabel Acak Diskrit dan Kontinu Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Chapter 10 Statistical Inference About Means and Proportions With Two Populations Estimation of the Difference between the Means of Two Populations:
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 Chapter 10 Comparisons Involving Means  1 =  2 ? ANOVA Estimation of the Difference between the Means of Two Populations: Independent Samples Hypothesis.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
Chapter 10 Comparisons Involving Means Part A Estimation of the Difference between the Means of Two Populations: Independent Samples Hypothesis Tests about.
Chapter 10 Comparisons Involving Means
Chapter 8 Interval Estimation Population Mean:  Known Population Mean:  Known Population Mean:  Unknown Population Mean:  Unknown n Determining the.
1 Pertemuan 15 Pendugaan Parameter Nilai Tengah Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 07 Pendugaan Parameter Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Interval Estimation Interval estimation of a population mean: Large Sample case Interval estimation of a population mean: Small sample case.
1 Pertemuan 09 Peubah Acak Kontinu Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 07 Peubah Acak Diskrit Matakuliah: I0134 -Metode Statistika Tahun: 2007.
1 Pertemuan 06 Sebaran Penarikan Contoh Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
OMS 201 Review. Range The range of a data set is the difference between the largest and smallest data values. It is the simplest measure of dispersion.
1 Pertemuan 09 Pengujian Hipotesis 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 10 Analisis Ragam (Varians) - 1 Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 08 Pengujian Hipotesis 1 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 1 Slide © 2003 South-Western /Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 Inference About a Population Variance Sometimes we are interested in making inference about the variability of processes. Examples: –Investors use variance.
1 Pertemuan 05 Peubah Acak Kontinu dan Fungsi Kepekatannya Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Korelasi dan Regresi Linear Sederhana Pertemuan 25
1 Pertemuan 11 Sampling dan Sebaran Sampling-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 13 Regresi Linear dan Korelasi Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 1 Slide Interval Estimation Chapter 8 BA Slide A point estimator cannot be expected to provide the exact value of the population parameter.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Chapter 8 Interval Estimation n Interval Estimation of a Population Mean: Large-Sample Case Large-Sample Case n Interval Estimation of a Population.
1 1 Slide © 2003 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
[ ]  Chapter 8 Interval Estimation n Interval Estimation of a Population Mean: Large-Sample Case Large-Sample.
Interval Estimation  Interval Estimation of a Population Mean: Large-Sample Case  Interval Estimation of a Population Mean: Small-Sample Case  Determining.
Perbandingan dua populasi Pertemuan 8 Matakuliah: D Statistika dan Aplikasinya Tahun: 2010.
Aplikasi Sebaran Normal Pertemuan 12 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Chapter 9 Inferences Based on Two Samples: Confidence Intervals and Tests of Hypothesis.
Sebaran sampling Pertemuan 5 Matakuliah: D Statistika dan Aplikasinya Tahun: 2010.
1 Pertemuan 13 Selang Kepercayaan-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 24 Uji Kebaikan Suai Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Chapter 8 Estimation ©. Estimator and Estimate estimator estimate An estimator of a population parameter is a random variable that depends on the sample.
Sebaran Normal dan Normal Baku Pertemuan 11 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 19 Analisis Varians Klasifikasi Satu Arah Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Pertemuan 17 Analisis Varians Klasifikasi Satu Arah
Peubah Acak Diskrit Pertemuan 07
Pertemuan 10 Analisis data -I
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
St. Edward’s University
Pertemuan 22 Analisis Varians Untuk Regresi
Pengujian Parameter Regresi dan Korelasi Pertemuan 20
Pertemuan 17 Pengujian Hipotesis
Chapter 6 Confidence Intervals.
Pertemuan 13 Pendugaan Parameter Nilai Tengah
Pertemuan 13 Sebaran Seragam dan Eksponensial
Chapter 8 Interval Estimation
Chapter 6 Confidence Intervals.
Pertemuan 18 Pengujian Hipotesis Lanjutan
Chapter 6 Confidence Intervals.
Presentation transcript:

1 Pertemuan 16 Pendugaan Parameter Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa dapat menghitung penduga selang dari rataan, proporsi dan varians.

3 Outline Materi Selang nilai tengah (rataan) Selang beda nilai tengah (rataan) Selang proporsi dan beda proporsi Selang varians dan proporsi varians

4 [ ]  Interval Estimation Interval Estimation of a Population Mean: Large-Sample Case Interval Estimation of a Population Mean: Small-Sample Case Determining the Sample Size Interval Estimation of a Population Proportion

5 Interval Estimation of a Population Mean: Large-Sample Case Sampling Error Probability Statements about the Sampling Error Constructing an Interval Estimate: Large-Sample Case with  Known Calculating an Interval Estimate: Large-Sample Case with  Unknown

6 Sampling Error The absolute value of the difference between an unbiased point estimate and the population parameter it estimates is called the sampling error. For the case of a sample mean estimating a population mean, the sampling error is Sampling Error =

7 Interval Estimate of a Population Mean: Large-Sample Case (n > 30) With  Known where: is the sample mean 1 -  is the confidence coefficient z  /2 is the z value providing an area of  /2 in the upper tail of the standard normal probability distribution  is the population standard deviation n is the sample size

8 Interval Estimate of a Population Mean: Large-Sample Case (n > 30) With  Unknown In most applications the value of the population standard deviation is unknown. We simply use the value of the sample standard deviation, s, as the point estimate of the population standard deviation.

9 Interval Estimation of a Population Mean: Small-Sample Case (n < 30) with  Unknown Interval Estimate where 1 -  = the confidence coefficient t  /2 = the t value providing an area of  /2 in the upper tail of a t distribution with n - 1 degrees of freedom s = the sample standard deviation

10 Contoh Soal: Apartment Rents Interval Estimation of a Population Mean: Small-Sample Case (n < 30) with  Unknown A reporter for a student newspaper is writing an article on the cost of off-campus housing. A sample of 10 one-bedroom units within a half-mile of campus resulted in a sample mean of $550 per month and a sample standard deviation of $60. Let us provide a 95% confidence interval estimate of the mean rent per month for the population of one-bedroom units within a half- mile of campus. We’ll assume this population to be normally distributed.

11 t Value At 95% confidence, 1 -  =.95,  =.05, and  /2 =.025. t.025 is based on n - 1 = = 9 degrees of freedom. In the t distribution table we see that t.025 = Contoh Soal: Apartment Rents

12 Estimation of the Difference Between the Means of Two Populations: Independent Samples Point Estimator of the Difference between the Means of Two Populations Sampling Distribution Interval Estimate of      Large-Sample Case Interval Estimate of      Small-Sample Case

13 Properties of the Sampling Distribution of –Expected Value –Standard Deviation where:  1 = standard deviation of population 1  2 = standard deviation of population 2 n 1 = sample size from population 1 n 2 = sample size from population 2 Sampling Distribution of

14 Interval Estimate with  1 and  2 Known where: 1 -  is the confidence coefficient Interval Estimate with  1 and  2 Unknown where: Interval Estimate of  1 -  2 : Large-Sample Case (n 1 > 30 and n 2 > 30)

15 95% Confidence Interval Estimate of the Difference Between Two Population Means: Large-Sample Case,  1 and  2 Unknown Substituting the sample standard deviations for the population standard deviation: = or yards to yards. We are 95% confident that the difference between the mean driving distances of Par, Inc. balls and Rap, Ltd. balls lies in the interval of to yards. Contoh Soal: Par, Inc.

16 Interval Estimate of  1 -  2 : Small-Sample Case (n 1 < 30 and/or n 2 < 30) Interval Estimate with  2 Known where:

17 95% Confidence Interval Estimate of the Difference Between Two Population Means: Small-Sample Case = or.3 to 4.7 miles per gallon. We are 95% confident that the difference between the mean mpg ratings of the two car types is from.3 to 4.7 mpg (with the M car having the higher mpg). Contoh Soal: Specific Motors

18 Inferences About the Difference Between the Proportions of Two Populations Sampling Distribution of Interval Estimation of p 1 - p 2 Hypothesis Tests about p 1 - p 2

19 Expected Value Standard Deviation Distribution Form If the sample sizes are large (n 1 p 1, n 1 (1 - p 1 ), n 2 p 2, and n 2 (1 - p 2 ) are all greater than or equal to 5), the sampling distribution of can be approximated by a normal probability distribution. Sampling Distribution of

20 Interval Estimation of  2 Interval Estimate of a Population Variance where the    values are based on a chi- square distribution with n - 1 degrees of freedom and where 1 -  is the confidence coefficient.

21 Chi-Square Distribution With Tail Areas of % of the possible  2 values 95% of the possible  2 values 22 2 Interval Estimation of  2

22 Selamat Belajar Semoga Sukses.