BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU1 BCH Code a larger class of powerful random error-correcting cyclic codes a remarkable generalization of the.

Slides:



Advertisements
Similar presentations
Mahdi Barhoush Mohammad Hanaysheh
Advertisements

BCH Codes Hsin-Lung Wu NTPU.
296.3Page :Algorithms in the Real World Error Correcting Codes II – Cyclic Codes – Reed-Solomon Codes.
L. J. Wang 1 Introduction to Reed-Solomon Coding ( Part I )
15-853:Algorithms in the Real World
Information and Coding Theory
2015/4/28System Arch 2008 (Fire Tom Wada) 1 Error Correction Code (1) Fire Tom Wada Professor, Information Engineering, Univ. of the Ryukyus.
CHANNEL CODING REED SOLOMON CODES.
Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education.
II. Linear Block Codes. © Tallal Elshabrawy 2 Last Lecture H Matrix and Calculation of d min Error Detection Capability Error Correction Capability Error.
Wireless Mobile Communication and Transmission Lab. Chapter 2 Block code ----BCH The Theory and Technology of Error Control Coding.
Cellular Communications
DIGITAL COMMUNICATION Coding
Chapter 11 Algebraic Coding Theory. Single Error Detection M = (1, 1, …, 1) is the m  1 parity check matrix for single error detection. If c = (0, 1,
Ger man Aerospace Center Gothenburg, April, 2007 Coding Schemes for Crisscross Error Patterns Simon Plass, Gerd Richter, and A.J. Han Vinck.
Error Detection and Correction Rizwan Rehman Centre for Computer Studies Dibrugarh University.
Hamming Codes 11/17/04. History In the late 1940’s Richard Hamming recognized that the further evolution of computers required greater reliability, in.
Linear codes 1 CHAPTER 2: Linear codes ABSTRACT Most of the important codes are special types of so-called linear codes. Linear codes are of importance.
M. Khalily Dermany Islamic Azad University.  finite number of element  important in number theory, algebraic geometry, Galois theory, cryptography,
DIGITAL COMMUNICATION Error - Correction A.J. Han Vinck.
Cyclic codes 1 CHAPTER 3: Cyclic and convolution codes Cyclic codes are of interest and importance because They posses rich algebraic structure that can.
1 S Advanced Digital Communication (4 cr) Cyclic Codes.
Channel Coding Part 1: Block Coding
Part.7.1 Copyright 2007 Koren & Krishna, Morgan-Kaufman FAULT TOLERANT SYSTEMS Part 7 - Coding.
By: Hector L Contreras SSGT / USMC
Cyclic_Code2004/3/17Yuh-Ming Huang, CSIE NCNU1 v = (v 0, v 1,..., v n-1 ) : code vector v (1) = (v n-1, v 0, v 1, …, v n-2 ) v (i) = (v n-i, v n-i+1, …,
Cyclic Codes for Error Detection W. W. Peterson and D. T. Brown by Maheshwar R Geereddy.
1 SNS COLLEGE OF ENGINEERING Department of Electronics and Communication Engineering Subject: Digital communication Sem: V Cyclic Codes.
Codes Codes are used for the following purposes: - to detect errors - to correct errors after detection Error Control Coding © Erhan A. Ince Types: -Linear.
1 Network Coding and its Applications in Communication Networks Alex Sprintson Computer Engineering Group Department of Electrical and Computer Engineering.
MIMO continued and Error Correction Code. 2 by 2 MIMO Now consider we have two transmitting antennas and two receiving antennas. A simple scheme called.
Basic Characteristics of Block Codes
§6 Linear Codes § 6.1 Classification of error control system § 6.2 Channel coding conception § 6.3 The generator and parity-check matrices § 6.5 Hamming.
DIGITAL COMMUNICATIONS Linear Block Codes
EE 430 \ Dr. Muqaibel Cyclic Codes1 CYCLIC CODES.
ADVANTAGE of GENERATOR MATRIX:
Information and Coding Theory Cyclic codes Juris Viksna, 2015.
Information Theory Linear Block Codes Jalal Al Roumy.
Word : Let F be a field then the expression of the form a 1, a 2, …, a n where a i  F  i is called a word of length n over the field F. We denote the.
The parity bits of linear block codes are linear combination of the message. Therefore, we can represent the encoder by a linear system described by matrices.
10.1 Chapter 10 Error Detection and Correction Data can be corrupted during transmission. Some applications require that errors be detected and.
Perfect and Related Codes
Some Computation Problems in Coding Theory
Error Detection and Correction
Digital Communications I: Modulation and Coding Course Term Catharina Logothetis Lecture 9.
Abstract Algebra 2004/9/29Yuh-Ming Huang, CSIE NCNU1 Introduction to Algebra Def 2.0 ( G, * ) G: a set A binary operation * on G : a * b  G  a,b  G.
2016/2/14 1 Error Correction Code (1) Fire Tom Wada Professor, Information Engineering, Univ. of the Ryukyus.
Error Control Coding. Purpose To detect and correct error(s) that is introduced during transmission of digital signal.
1 Product Codes An extension of the concept of parity to a large number of words of data 0110… … … … … … …101.
Reed-Solomon Codes Rong-Jaye Chen.
CHAPTER 8 CHANNEL CODING: PART 3 Sajina Pradhan
Exercise in the previous class (1) Define (one of) (15, 11) Hamming code: construct a parity check matrix, and determine the corresponding generator matrix.
ECE 442 COMMUNICATION SYSTEM DESIGN LECTURE 10. LINEAR BLOCK CODES Husheng Li Dept. of EECS The University of Tennessee.
Channel Coding: Part I Presentation II Irvanda Kurniadi V. ( ) Digital Communication 1.
Class Report 林格名 : Reed Solomon Encoder. Reed-Solomom Error Correction When a codeword is decoded, there are three possible outcomes –If 2s + r < 2t (s.
RS – Reed Solomon Error correcting code. Error-correcting codes are clever ways of representing data so that one can recover the original information.
V. Non-Binary Codes: Introduction to Reed Solomon Codes
Information and Coding Theory
Yuh-Ming Huang, CSIE NCNU
Subject Name: Information Theory Coding Subject Code: 10EC55
CHAPTER 3: Cyclic and convolution codes
Introduction to Finite Field
Block codes. encodes each message individually into a codeword n is fixed, Input/out belong to alphabet Q of cardinality q. The set of Q-ary n-tuples.
Cyclic Code.
Error Correction Code (1)
Yuh-Ming Huang, CSIE NCNU
Error Correction Code (1)
Yuh-Ming Huang, CSIE, NCNU
CHAPTER 3: Cyclic and convolution codes
Chapter 10 Error Detection and Correction
Presentation transcript:

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU1 BCH Code a larger class of powerful random error-correcting cyclic codes a remarkable generalization of the Hamming codes for multiple-error correction Def : Let q and m be given and let α be any element of GF(q m ) of order n. Then for any positive integer t and any integer j 0, the corresponding BCH code is the cyclic code of block length n with the generator polynomial g(x) = LCM[f j 0 (x), f j 0 +1 (x), …, f j 0 +2t-1 (x)] where f j (x) is the minimal polynomial at α j ※ Let 1. n = q m – 1 |n | q m j 0 = 1 |α: non-primitive element (α n = 1)  | α: primitive element (α n = 1) | α, α 2, α 3, …, α 2t | primitive (or narrow-sense) BCH code|

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU2 ※ Let q = 2, j 0 = 1 ﹡取相鄰 power of Block length : n = 2 m – 1 or n | 2 m – 1 α 保證 d* ≥ 2t + 1 Number of parity-check digits : n – k ≤ mt  Minimum distance : d* ≥ 2t + 1 (BCH bound)   t-error-correcting BCH code designed distance g(x) = LCM [f 1 (x), f 2 (x), …, f 2t (x)] ∵ i (even) = I ’ 2 l where i ’ is an odd number and l ≥ 1 ∴ α i = (α i ’ ) 2 l is a conjugate of α i ’ ∴ α i & α i ’ have the same minimal polynomial i.e. f i (x) = f i’ (x) ∴ g(x) = LCM [ f 1 (x), f 3 (x), …, f 2t-1 (x) ] ∵ deg[ f i (x) ] ≤ m  n – k ≤ mt 2 = 12 4 = = 32 8 = = 52 1 Eg: t = 2 g(x) = LCM [f 1 (x), f 2 (x), f 3 (x), f 4 (x)] q = 2 = LCM [x 4 +x+1, x 4 +x+1, x 4 +x 3 +x 2 +x+1, x 4 +x+1] m = 4 = (x 4 +x+1)(x 4 +x 3 +x 2 +x+1) n = q m – 1 = 15 = x 8 +x 7 +x 6 +x 4 +1 n – k = 8  BCH(15, 7, 5) 2t + 1 ≤ d* ≤ w(g(x)) (n, t)  k ! k is unknown until after g(x) is found

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU3 Eg: t = 2 g(x) = LCM [f 1 (x), f 2 (x), f 3 (x), f 4 (x)] q = 4 = (x 2 +x+2)(x 2 +x+3)(x 2 +3x+1) m = 2 = x 6 +3x 5 +x 4 +2x 2 +2x+1 n = q m – 1 = 15 BCH(15, 9) t = 6 g(x) = x 14 +x 13 +…+x 2 +x+1 Q: BCH(15, 1) – it can actually correct 7 errors  simple repetition code ※ The single-error-correcting BCH code of length 2 m – 1 is a Hamming Code

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU4 Table 7.1 Representations of GF(2 4 ). p(z) = z 4 + z + 1 Exponential Notation Polynomial Notation Binary Notation Decimal Notation Minimal Polynomial x α0α x + 1 α1α1 z00102x 4 + x + 1 α2α2 z2z x 4 + x + 1 α3α3 z3z x 4 + x 3 + x 2 + x + 1 α4α4 z x 4 + x + 1 α5α5 z 2 + z01106x 2 + x + 1 α6α6 z 3 + z x 4 + x 3 + x 2 + x + 1 α7α7 z 3 + z x 4 + x α8α8 z x 4 + x + 1 α9α9 z 3 + z101010x 4 + x 3 + x 2 + x + 1 α 10 z 2 + z x 2 + x + 1 α 11 z 3 + z 2 + z x 4 + x α 12 z 3 + z 2 + z x 4 + x 3 + x 2 + x + 1 α 13 z 3 + z x 4 + x Α 14 z x 4 + x 3 + 1

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU5 Table 7.2 GF(4 2 )  GF(4)[x]/z 2 +z+2 p(z) = z 2 +z+2 α α 2 α 4 α 8 α 16  α α 3 α 6 α 12 α 24 α 48  α 3  α 9 Exponential Notation Polynomial Notation Binary Notation Decimal Notation Minimal Polynomial α0α0 1011x + 1 α1α1 z104x 2 + x + 2 α2α2 z x 2 + x + 3 α3α3 3z x 2 + 3x + 1 α4α4 z x 2 + x + 2 α5α5 2022x + 2 α6α6 2z208x 2 +2x + 1 α7α7 2z x 2 + 2x + 2 α8α8 z x 2 + x + 3 α9α9 2z x 2 + 2x + 1 α x + 3 α 11 3z3012x 2 + 3x + 3 α 12 3z x 2 + 3x + 1 α 13 2z x 2 + 2x + 2 α 14 3z x 2 + 3x + 3 α = z α 15 = 1

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU6 TABLE 6.1 BCH CODES GENERATED BY PRIMITIVE ELEMENTS OF ORDER LESS THAN 2 10 ( 上 ) mnktmnktmnktnktnkt n = 2 m - 1 For t small n – k = mt

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU7 TABLE 6.1 BCH CODES GENERATED BY PRIMITIVE ELEMENTS OF ORDER LESS THAN 2 10 ( 下 ) nktnktnktnktnkt

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU8 TABLE 6.2 GALOIS FIELD GF(2 6 ) WITH ρ(α) = 1 + α +α 6 = 0 00( )α 15 α 3 +α 5 ( ) 11( )α α +α 4 ( ) α αα 17 α+α 2 +α 5 ( ) α2α2 α 2 ( )α 18 1+α+α 2 +α 3 ( ) α3α3 α 3 ( )α 19 α+α 2 +α 3 +α 4 ( ) α4α4 α 4 ( )α 20 α 2 +α 3 +α 4 +α 5 ( ) α5α5 α 5 ( )α 21 1+α +α 3 +α 4 +α 5 ( ) α6α6 1+α( )α α 2 +α 4 +α 5 ( ) α7α7 α+α 2 ( )α α 3 +α 5 ( ) α8α8 α 2 +α 3 ( )α α 4 ( ) α9α9 α 3 +α 4 ( )α 25 α +α 5 ( ) α 10 α 4 +α 5 ( )α 26 1+α+α 2 ( ) α 11 1+α( )α 27 α+α 2 +α 3 ( ) α α 2 ( )α 28 α 2 +α 3 +α 4 ( ) α 13 α +α 3 ( )α 29 α 3 +α 4 +α 5 ( ) α 14 α 2 +α 4 ( )α 30 1+α +α 4 +α 5 ( )

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU9 TABLE 6.4 GENERATOR POLYNOMIALS OF ALL THE BCH CODES OF LENGTH 63 nk tg(X) g 1 (X) = 1 + X + X g 2 (X) = (1 + X + X 6 )(1 + X + X 2 + X 4 + X 6 ) 45 3 g 3 (X) = (1 + X + X 2 + X 5 + X 6 )g 2 (X) 39 4 g 4 (X) = (1 + X 3 + X 6 )g 3 (X) 36 5 g 5 (X) = (1 + X 2 + X 3 )g 4 (X) 30 6 g 6 (X) = (1 + X 2 + X 3 + X 5 + X 6 )g 5 (X) 24 7 g 7 (X) = (1 + X + X 3 + X 4 + X 6 )g 6 (X) 1810g 10 (X) = (1 + X 2 + X 4 + X 5 + X 6 )g 7 (X) 1611g 11 (X) = (1 + X + X 2 )g 10 (X) 1013g 13 (X) = (1 + X + X 4 + X 5 + X 6 )g 11 (X) 715g 15 (X) = (1 + X + X 3 )g 13 (X)

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU10 TABLE 6.2 Continued α α 2 +α 5 ( )α 47 1+α+α 2 +α 5 ( ) α α 3 ( )α α 2 +α 3 ( ) α 33 α +α 4 ( )α 49 α +α 3 +α 4 ( ) α 34 α 2 +α 5 ( )α 50 α 2 +α 4 +α 5 ( ) α α +α 3 ( )α 51 1+α +α 3 +α 5 ( ) α 36 α+α 2 +α 4 ( )α α 2 +α 4 ( ) α 37 α 2 +α 3 +α 5 ( )α 53 α +α 3 +α 5 ( ) α 38 1+α +α 3 +α 4 ( )α 54 1+α+α 2 +α 4 ( ) α 39 α+α 2 +α 4 +α 5 ( )α 55 α+α 2 +α 3 +α 5 ( ) α 40 1+α+α 2 +α 3 +α 5 ( )α 56 1+α+α 2 +α 3 +α 4 ( ) α α 2 +α 3 +α 4 ( )α 57 α+α 2 +α 3 +α 4 +α 5 ( ) α 42 α +α 3 +α 4 +α 5 ( )α 58 1+α+α 2 +α 3 +α 4 +α 5 ( ) α 43 1+α+α 2 +α 4 +α 5 ( )α α 2 +α 3 +α 4 +α 5 ( ) α α 2 +α 3 +α 5 ( )α α 3 +α 4 +α 5 ( ) α α 3 +α 4 ( )α α 4 +α 5 ( ) α 46 α +α 4 +α 5 ( )α α 5 ( ) α 63 = 1

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU11 TABLE 6.3 MINIMAL POLYNOMIALS OF THE ELEMENTS IN GF(2 6 ) ElementsMinimal polynomials α, α 2, α 4, α 8, α 16, α X + X 6 α 3, α 6, α 12, α 24, α 48, α X + X 2 + X 4 + X 6 α 5, α 10, α 20, α 40, α 17, α X + X 2 + X 5 + X 6 α 7, α 14, α 28, α 56, α 49, α X 3 + X 6 α 9, α 18, α X 2 + X 3 α 11, α 22, α 44, α 25, α 50, α X 2 + X 3 + X 5 + X 6 α 13, α 26, α 52, α 41, α 19, α X + X 3 + X 4 + X 6 α 15, α 30, α 60, α 57, α 51, α X 2 + X 4 + X 5 + X 6 α 21, α X + X 2 α 23, α 46, α 29, α 58, α 53, α X + X 4 + X 5 + X 6 α 27, α 54, α X + X 6 α 31, α 62, α 61, α 59, α 55, α X 5 + X 6

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU12 Def t-error-correcting BCH code of length n = 2 m – 1: A binary n-tuple v = (v 0, v 1, …, v n-1 ) is a code word iff the polynomial v(x) = v 0 + v 1 x + … + v n-1 x n-1 has α, α 2, α 3, …, α 2t as roots. v(α i ) = v 0 + v 1 α i + v 2 α 2i + … + v n-1 α (n-1)i = 0 1 ≤ i ≤ 2t

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU13 By conjugate property if x – α i | v(x) α i α j 互為 conjuqate then x – α j | v(x) Ref: Block Codes – extended 4 Proof: d* ≥ 2t + 1 (BCH bound) suppose code vector v = (v 0, v 1, …, v n-1 ) with weight  ≤ 2t Let v j1, v j2, …, v j  be the nonzero components of v

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU14 implies (1, 1, …,1) =

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU15 Syndrome S = (S 1, S 2, …, S 2t ) = rH T r = (r 0, r 1, …, r n-1 ) S i = r(α i ) r(x) = r 0 + r 1 x + … + r n-1 x n-1 r(x) = α i (x)f i (x) + b i (x) f i (x): minimal polynomial of α i ∵ f i (α i ) = 0 S i = r(α i ) = b i (α i ) Q: 與 s(x) = r(x)/g(x) 之關係

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU16 Peterson-Gorenstein-Zierler Decoder (1) e(X) = e 0 + e 1 X + … + e n-1 X n-1 where at most t coefficients are nonzero (2) Suppose v errors actually occur, 0 ≤ v ≤ t, in unknown locations i 1, i 2, …,i v ∴ e(X) = e i 1 X i 1 + e i 2 X i 2 + … + e i v X i v (3) S 1 = v(α) = c(α) + e(α) = e(α) = e i 1 α i 1 + e i 2 α i 2 + … + e i v α i v Let Y l = e i l : error magnitude 1 ≤ l ≤ v X l = α i l : error-location number Note : all X l are different ( ∵ α n = 1) S 1 = Y 1 X 1 + Y 2 X 2 + … + Y v X v i j, e i j, v are unknown ! Q

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU17 (4) For α α 2 α 3 … α 2t S 1 = Y 1 X 1 + Y 2 X 2 + … + Y v X v Y l  GF(q) S 2 = Y 1 X Y 2 X … + Y v X v 2 X l  GF(q m ) S 2 = Y 1 X Y 2 X … + Y v X v 3., S 2t = Y 1 X 1 2t + Y 2 X 2 2t + … + Y v X v 2t 1.( * ) 至少有一解 ∵ Syndrome S i is defined in such way 2. 證明此解 unique ( * ) nonlinear equations

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU18 Consider the polynomial Λ(x) ≡ (1-X 1 x)(1-X 2 x)…(1-X v x) = 1 + Λ 1 x + Λ 2 x 2 + … + Λ v x v – (1) error-locator polynomial If we knew the coefficients Λ l of Λ(x) we could find the zeros of Λ(x) to obtain the error locations X l S i  Λ l 1≤i≤2t 1≤l≤v Multiply both sides of (1) by Y l X l j+v and set x = X l -1

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU19 ∵ v ≤ t ∴ S 1 ~ S 2v all known

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU20 Thm : The Vandermonde matrix has a nonzero determinant iff all of X i 1 ≤ i ≤ u are distinct Thm : The matrix of syndromes M is nonsingular if u is equal to v, the number of errors that actually occurred. The matrix is singular if u > v. If v > t i.e. u < v 時 det(M) = ?

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU21

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU22 Enter υ(x) Compute syndromes S j = υ(α j+j 0 -1 ) j = 1 … 2t v = t det(M) = 0 v  v-1 Find error location X l (l = 1…..v) by finding zeros of Λ(x) Halt Yes No special case j 0 = 1 α α 2 … α 2t Figure 7.1 The Peterson-Gorenstein-Zierler decoder.

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU23 Eg: BCH(15,5) triple-error-correcting code. g(X) = X 10 + X 8 + X 5 + X 4 + X 2 + X + 1 received code polynomial  V(X) = X 7 + X 2 In GF(2 4 ) S 1 = α 7 + α 2 = α 12 S 2 = α 14 + α 4 = α 9 S 3 = α 21 + α 6 = 0 S 4 = α 28 + α 8 = α 3 S 5 = α 35 + α 10 = α 0 S 6 = α 42 + α 12 = 0

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU24

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU25 Reed-Solomon Code (maximum-distance code) (1)The symbol field GF(q) and the error-locator field GF(q m ) are the same (Y l ) (X l ) (i.e. m = 1) (2)Take α as primitive n = q m – 1 = q – 1 (3)The minimal polynomial over GF(q) of an element β in the same GF(q) is f β (X) = X – β (4)Take j 0 = 1 g(X) = (X – α)(X – α 2 )… (X – α 2t ) ∴ n – k = 2t eg1. (15,11) t = 2 GF(16) j 0 = 1 g(X) = (X – α)(X – α 2 ) (X – α 3 )(X – α 4 ) = X 4 + (Z 3 + Z 2 + 1)X 3 + (Z 3 + Z 2 )X 2 + Z 3 X + (Z 2 + Z + 1) = X 4 + α 13 X 3 + α 6 X 2 + α 3 X + α 10 n – k = 4  k = 11 (11 16-ary symbols  44 bits)

BCH_Code 2004/5/5Yuh-Ming Huang, CSIE, NCNU26 ※ 1. n – k + 1 = 2t + 1 ≤ d* ≤ 1 + n – k ∴ d* = 1 + n – k 2. R-S codes always have relatively short block-length as compared to other cyclic codes over the same alphabet ! eg2. (7,3) t = 2 GF(8) j 0 = 4 g(X) = (X – α 4 )(X – α 5 ) (X – α 6 )(X – α 0 ) = X 4 + (Z 2 + 1)X 3 + (Z 2 + 1)X 2 + (Z + 1)X + Z n – k = 4  k = 3 (3 8-ary symbols  9 bits) If i(X) = (Z 2 + Z)X 2 + X + (Z + 1) c(X) = i(X)g(X) = (α 4 X 2 + X + α 3 )(X 4 + α 6 X 3 + α 6 X 2 + α 3 X + α) = α 4 X 6 + αX 5 + α 6 X 4 + 0X 3 + 0X 2 + α 5 X + α 5