HW: Pg. 341-342 #13-61 eoo.

Slides:



Advertisements
Similar presentations
Dividing Polynomials.
Advertisements

Remainder and Factor Theorems
Long and Synthetic Division of Polynomials Section 2-3.
Dividing Polynomials Objectives
5-4 Dividing Polynomials Long Division Today’s Objective: I can divide polynomials.
EXAMPLE 1 Use polynomial long division
Warm Up #1 1. Use synthetic substitution to evaluate f (x) = x3 + x2 – 3x – 10 when x = – ANSWER –4.
EXAMPLE 3 Use synthetic division Divide f (x)= 2x 3 + x 2 – 8x + 5 by x + 3 using synthetic division. – – 8 5 – 6 15 – 21 2 – 5 7 – 16 2x 3 + x 2.
Chapter 5: Polynomials & Polynomial Functions
Section 7.3 Products and Factors of Polynomials.
3.3: Dividing Polynomials: Remainder and Factor Theorems Long Division of Polynomials 1.Arrange the terms of both the dividend and the divisor in descending.
Section 3 Dividing Polynomials
Lesson 2.4, page 301 Dividing Polynomials Objective: To divide polynomials using long and synthetic division, and to use the remainder and factor theorems.
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Warm Up Divide using long division ÷ ÷
2.5 Apply the Remainder and Factor Theorems p. 120 How do you divide polynomials? What is the remainder theorem? What is the difference between synthetic.
Polynomial Division and the Remainder Theorem Section 9.4.
1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 5-1 Polynomials and Polynomial Functions Chapter 5.
EXAMPLE 1 Find a common monomial factor Factor the polynomial completely. a. x 3 + 2x 2 – 15x Factor common monomial. = x(x + 5)(x – 3 ) Factor trinomial.
Lesson 2.3 Real Zeros of Polynomials. The Division Algorithm.
3.2 Dividing Polynomials 11/28/2012. Review: Quotient of Powers Ex. In general:
5. Divide 4723 by 5. Long Division: Steps in Dividing Whole Numbers Example: 4716  5 STEPS 1. The dividend is The divisor is 5. Write.
Multiply polynomials vertically and horizontally
6.4 Multiplying/Dividing Polynomials 2/8/2013. Example 1 Multiply Polynomials Vertically Find the product. () x 2x 2 4x4x7 – + () 2x – SOLUTION Line up.
Algebraic long division Divide 2x³ + 3x² - x + 1 by x + 2 x + 2 is the divisor The quotient will be here. 2x³ + 3x² - x + 1 is the dividend.
Objective Use long division and synthetic division to divide polynomials.
Divide a polynomial by a binomial
6.4 Multiplying/Dividing Polynomials 1/10/2014. How do you multiply 1256 by 13?
6.5 The Remainder and Factor Theorems
5.5: Apply Remainder and Factor Theorems (Dividing Polynomials) Learning Target: Learn to complete polynomial division using polynomial long division and.
6-5: The Remainder and Factor Theorems Objective: Divide polynomials and relate the results to the remainder theorem.
The Remainder Theorem A-APR 2 Explain how to solve a polynomial by factoring.
Pg.15 Synthetic Division EQ: What is synthetic division and how is it used to determine roots and factors?
6.3 Dividing Polynomials (Day 1)
UNIT 2, LESSON 3 POLYNOMIAL DIVISION Adapted by Mrs. King from
Objective Use long division and synthetic division to divide polynomials.
Warm-Up Exercises 1. Use the quadratic formula to solve 2x 2 – 3x – 1 = 0. Round the nearest hundredth. 2. Use synthetic substitution to evaluate f (x)
Division of Polynomials Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Dividing Polynomials Long division of polynomials.
DIVIDING POLYNOMIALS Mr. Richard must have your “Un-Divided” attention for this lesson!
Warm up Objective: To divide polynomials Lesson 6-7 Polynomial Long Division.
WARM UP 1. Factor the polynomial completely. 27 – y 3 2. What are the real number solutions of the equation 2x = x 2 + x 3 ?
Warm Up Multiply: (2x + 1)(x – 3) What is the end behavior of this polynomial? What are the zeros of this polynomial?
6.4 Multiplying/Dividing Polynomials 1/10/2014. How do you multiply 1256 by 13?
Quotient Dividend Remainder Divisor Long Division.
Division of Polynomials Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Dividing Polynomials Long division of polynomials.
Sullivan Algebra and Trigonometry: Section R.6 Polynomial Division Objectives of this Section Divide Polynomials Using Long Division Divide Polynomials.
WARM UP Simplify DIVISION OF POLYNOMIALS OBJECTIVES  Divide a polynomial by a monomial.  Divide two polynomials when the divisor is not a monomial.
Sect. 2-2 Synthetic Division; The remainder and Factor theorems Objective: SWBAT use the synthetic division and to apply the remainder and factor theorems.
5-4 Dividing Polynomials Synthetic Division
Holt Algebra Dividing Polynomials Synthetic division is a shorthand method of dividing a polynomial by a linear binomial by using only the coefficients.
Chapter 5 Section 5. EXAMPLE 1 Use polynomial long division Divide f (x) = 3x 4 – 5x 3 + 4x – 6 by x 2 – 3x + 5. SOLUTION Write polynomial division.
Dividing Polynomials. Long Division of Polynomials Arrange the terms of both the dividend and the divisor in descending powers of any variable. Divide.
3.2 Division of Polynomials. Remember this? Synthetic Division 1. The divisor must be a binomial. 2. The divisor must be linear (degree = 1) 3. The.
Objective Use long division and synthetic division to divide polynomials.
Warm Up Divide using long division ÷ ÷
Warm-up 6-5 1) 2).
Lesson 6-5: Synthetic Division
Dividing larger Numbers
DIVIDING POLYNOMIALS Synthetically!
Apply the Remainder and Factor Theorems Lesson 2.5
Objective Use long division and synthetic division to divide polynomials.
Polynomials and Polynomial Functions
Polynomial and Synthetic Division
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Dividing Polynomials WOW! I want to learn how to do that?
2.5 Apply the Remainder and Factor Theorem
Warm Up.
Divide using long division
Warm Up Honors Algebra 2 11/3/17
Presentation transcript:

HW: Pg. 341-342 #13-61 eoo

Quiz 1 Pg. 344 #13-26

Vocabulary Polynomial Long Division: When you divide a polynomial ______ by a divisor _____, you get a quotient polynomial ______ and a remainder polynomial _____. This can be written as: Remainder Theorem: If a polynomial _____ is divided by ______, then the remainder is __________. Synthetic Division: Only use the ___________ of the polynomial and the _____________ must be in the form _________. Factor Theorem: A polynomial _____ has a factor ________ if and only if ___________.

Use polynomial long division EXAMPLE 1 SOLUTION Write polynomial division in the same format you use when dividing numbers. Include a “0” as the coefficient of x2 in the dividend. At each stage, divide the term with the highest power in what is left of the dividend by the first term of the divisor. This gives the next term of the quotient.

) Use polynomial long division EXAMPLE 1 3x2 + 4x – 3 x2 – 3x + 5 quotient x2 – 3x + 5 3x4 – 5x3 + 0x2 + 4x – 6 ) Multiply divisor by 3x4/x2 = 3x2 3x4 – 9x3 + 15x2 Subtract. Bring down next term. 4x3 – 15x2 + 4x 4x3 – 12x2 + 20x Multiply divisor by 4x3/x2 = 4x Subtract. Bring down next term. –3x2 – 16x – 6 –3x2 + 9x – 15 Multiply divisor by – 3x2/x2 = – 3 –25x + 9 remainder

Use polynomial long division EXAMPLE 1 3x4 – 5x3 + 4x – 6 x2 – 3x + 5 = 3x2 + 4x – 3 + –25x + 9 ANSWER CHECK You can check the result of a division problem by multiplying the quotient by the divisor and adding the remainder. The result should be the dividend. (3x2 + 4x – 3)(x2 – 3x + 5) + (–25x + 9) = 3x2(x2 – 3x + 5) + 4x(x2 – 3x + 5) – 3(x2 – 3x + 5) – 25x + 9 = 3x4 – 9x3 + 15x2 + 4x3 – 12x2 + 20x – 3x2 + 9x – 15 – 25x + 9 = 3x4 – 5x3 + 4x – 6

) Use polynomial long division with a linear divisor EXAMPLE 2 x2 + 7x quotient + 7 x – 2 x3 + 5x2 – 7x + 2 ) x3 – 2x2 Multiply divisor by x3/x = x2. 7x2 – 7x Subtract. 7x2 – 14x Multiply divisor by 7x2/x = 7x. 7x + 2 Subtract. 7x – 14 Multiply divisor by 7x/x = 7. remainder 16 ANSWER x3 + 5x2 – 7x +2 x – 2 = x2 + 7x + 7 + 16

for Examples 1 and 2 GUIDED PRACTICE Divide using polynomial long division. (2x2 – 3x + 8) + –18x + 7 x2 + 2x – 1 ANSWER (x2 – 3x + 10) + –30 x + 2 ANSWER

Use synthetic division EXAMPLE 3 SOLUTION –3 2 1 –8 5 –6 15 –21 2 –5 7 –16 2x3 + x2 – 8x + 5 x + 3 = 2x2 – 5x + 7 – 16 ANSWER

Factor a polynomial EXAMPLE 4 SOLUTION Because x + 2 is a factor of f (x), you know that f (–2) = 0. Use synthetic division to find the other factors. –2 3 –4 –28 –16 –6 20 16 3 –10 –8 0

Use the result to write f (x) as a product of two Factor a polynomial EXAMPLE 4 Use the result to write f (x) as a product of two factors and then factor completely. f (x) = 3x3 – 4x2 – 28x – 16 Write original polynomial. = (x + 2)(3x2 – 10x – 8) Write as a product of two factors. = (x + 2)(3x + 2)(x – 4) Factor trinomial.

for Examples 3 and 4 GUIDED PRACTICE Divide using synthetic division. Factor the polynomial completely given that x – 4 is a factor. x2 + x – 4 + 11 x + 3 ANSWER ANSWER (x – 4)(x –3)(x + 1) 4x2 + 5x + 2 + 9 x – 1 ANSWER ANSWER (x – 4)(x –2)(x +5)

Standardized Test Practice EXAMPLE 5 SOLUTION Because f (3) = 0, x – 3 is a factor of f (x). Use synthetic division. 3 1 –2 –23 60 3 3 –60 1 1 –20 0 Use the result to write f (x) as a product of two factors. Then factor completely. f (x) = x3 – 2x2 – 23x + 60 = (x – 3)(x2 + x – 20) = (x – 3)(x + 5)(x – 4) The zeros are 3, –5, and 4. The correct answer is A. ANSWER

for Example 5 GUIDED PRACTICE Find the other zeros of f given that f (–2) = 0. ANSWER 3 and –3 ANSWER 1 and –7

HOmework: Pg. 356 #15-35 eoo