Network Layer r Introduction r Virtual circuit and datagram networks r Routing algorithms m Link state m Distance Vector m Hierarchical routing r What’s.

Slides:



Advertisements
Similar presentations
4: Network Layer4a-1 IP Addressing: introduction r IP address: 32-bit identifier for host, router interface r interface: connection between host, router.
Advertisements

8-1 Last time □ Network layer ♦ Introduction forwarding vs. routing ♦ Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding.
Network Layer4-1 Hierarchical Routing scale: with 200 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would.
Lecture 9 Overview. Hierarchical Routing scale – with 200 million destinations – can’t store all dests in routing tables! – routing table exchange would.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 22 Omar Meqdadi Department of Computer Science and Software Engineering University.
Announcement r Recitation tomorrow on Project 2 r Midterm Survey at the end of this class.
Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol –Datagram format.
Week 5: Internet Protocol Continue to discuss Ethernet and ARP –MTU –Ethernet and ARP packet format IP: Internet Protocol –Datagram format –IPv4 addressing.
4a-1 CSE401: Computer Networks Hierarchical Routing & Routing in Internet S. M. Hasibul Haque Lecturer Dept. of CSE, BUET.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
N/W Layer Addressing1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
11- IP Network Layer4-1. Network Layer4-2 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection.
Announcement r Project 3 out, due 3/10 r Homework 3 out last week m Due next Mon. 3/1.
Network Layer4-1 IP: Internet Protocol r Datagram format r IPv4 addressing r DHCP: Dynamic Host Configuration Protocol r NAT: Network Address Translation.
1 Announcement r Project #2 due midnight r Homework #3 due Friday midnight r Project #3 is out.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
The Internet Network layer
14 – Inter/Intra-AS Routing
Review r The Internet (IP) Protocol m Datagram format m IP fragmentation m ICMP: Internet Control Message Protocol m NAT: Network Address Translation r.
Routing Algorithms & Routing Protocols  Shortest Path Routing  Flooding  Distance Vector Routing  Link State Routing  Hierarchical Routing  Broadcast.
The Network Layer: IP, subnets, NAT and Routing Based on slides from the Computer Networking: A Top Down Approach Featuring the Internet by Kurose and.
Network Layer4-1 NAT: Network Address Translation local network (e.g., home network) /24 rest of.
Lecture 10 Overview. Border Gateway Protocol(BGP) De facto standard for Internet inter-AS routing allows subnet to advertise its existence to rest of.
14 – Inter/Intra-AS Routing Network Layer Hierarchical Routing scale: with > 200 million destinations: can’t store all dest’s in routing tables!
CSC 450/550 Part 4: Network Layer Part B: The Internet Routing Protocols.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
12 – IP, NAT, ICMP, IPv6 Network Layer.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
RSC Part II: Network Layer 6. Routing in the Internet (2 nd Part) Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
Introduction 1 Lecture 19 Network Layer (Routing Protocols) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
CS 3830 Day 29 Introduction 1-1. Announcements r Quiz 4 this Friday r Signup to demo prog4 (all group members must be present) r Written homework on chapter.
10-1 Last time □ Transitioning to IPv6 ♦ Tunneling ♦ Gateways □ Routing ♦ Graph abstraction ♦ Link-state routing Dijkstra's Algorithm ♦ Distance-vector.
Homework 4 r Out: Fri 2/27/2015 r In: Fri 3/13/2015.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
4: Network Layer4a-1 Routing in the Internet r The Global Internet consists of Autonomous Systems (AS) interconnected with each other: m Stub AS: small.
IPv6. r Initial motivation: 32-bit address space soon to be completely allocated. r Additional motivation: m header format helps speed processing/forwarding.
1 Network Layer Lecture 15 Imran Ahmed University of Management & Technology.
Network Layer4-1 Intra-AS Routing r Also known as Interior Gateway Protocols (IGP) r Most common Intra-AS routing protocols: m RIP: Routing Information.
Network Layer4-1 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol.
Sharif University of Technology, Kish Island Campus Internet Protocol (IP) by Behzad Akbari.
Transport Layer3-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Datagram networks r no call setup at network layer r routers: no state about end-to-end connections m no network-level concept of “connection”
1 Network Layer Lecture 11 Imran Ahmed University of Management & Technology.
Transport Layer3-1 Network Layer Every man dies. Not every man really lives.
Network Layer4-1 Routing Algorithm Classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
The Internet Network layer
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 19 Omar Meqdadi Department of Computer Science and Software Engineering University.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
CSE 421 Computer Networks. Network Layer 4-2 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside.
4: Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Routing in the Internet
14 – Inter/Intra-AS Routing
Homework 4 Out: Fri 2/24/2017 In: Fri 3/10/2017.
Chapter 4: Network Layer
Chapter 4: Network Layer
Homework 4 Out: Fri 2/26/2016 In: Fri 3/11/2016.
Chapter 4: Network Layer
Part 4: Network Layer Part B: The Internet Routing Protocols
Chapter 4: Network Layer
Overview The Internet (IP) Protocol Datagram format IP fragmentation
Chapter 4: Network Layer
Chapter 4: Network Layer
Presentation transcript:

Network Layer r Introduction r Virtual circuit and datagram networks r Routing algorithms m Link state m Distance Vector m Hierarchical routing r What’s inside a router m Input ports m Switching ports m Output ports m Queuing r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r Routing in the Internet m RIP m OSPF m BGP r Broadcast and multicast routing

Network Layer The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling conventions ICMP protocol error reporting router “signaling” Transport layer: TCP, UDP Link layer physical layer Network layer

Network Layer r Introduction r Virtual circuit and datagram networks r Routing algorithms m Link state m Distance Vector m Hierarchical routing r What’s inside a router m Input ports m Switching ports m Output ports m Queuing r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r Routing in the Internet m RIP m OSPF m BGP r Broadcast and multicast routing

Network Layer IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier Internet checksum time to live 32 bit source IP address IP protocol version number header length (bytes) max number remaining hops (decremented at each router) for fragmentation/ reassembly total datagram length (bytes) upper layer protocol to deliver payload to head. len type of service “type” of data flgs fragment offset upper layer 32 bit destination IP address Options (if any) E.g. timestamp, record route taken, specify list of routers to visit. how much overhead with TCP? r 20 bytes of TCP r 20 bytes of IP r = 40 bytes + app layer overhead

Network Layer IP Fragmentation & Reassembly r network links have MTU (max.transfer size) - largest possible link-level frame. m different link types, different MTUs r large IP datagram divided (“fragmented”) within net m one datagram becomes several datagrams m “reassembled” only at final destination m IP header bits used to identify, order related fragments fragmentation: in: one large datagram out: 3 smaller datagrams reassembly

Network Layer IP Fragmentation and Reassembly ID =x offset =0 fragflag =0 length =4000 ID =x offset =0 fragflag =1 length =1500 ID =x offset =185 fragflag =1 length =1500 ID =x offset =370 fragflag =0 length =1040 One large datagram becomes several smaller datagrams Example r 4000 byte datagram r MTU = 1500 bytes 1480 bytes in data field offset = 1480/8

Network Layer r Introduction r Virtual circuit and datagram networks r Routing algorithms m Link state m Distance Vector m Hierarchical routing r What’s inside a router m Input ports m Switching ports m Output ports m Queuing r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r Routing in the Internet m RIP m OSPF m BGP r Broadcast and multicast routing

Network Layer IP Addressing: introduction r IP address: 32-bit identifier for host, router interface r interface: connection between host/router and physical link m router’s typically have multiple interfaces m host typically has one interface m IP addresses associated with each interface =

Network Layer Subnets r IP address: m subnet part (high order bits) m host part (low order bits) r What’s a subnet ? m device interfaces with same subnet part of IP address m can physically reach each other without intervening router network consisting of 3 subnets subnet

Network Layer Subnets / / /24 Recipe r To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet. Subnet mask: /24

Network Layer Subnets How many?

Network Layer IP addressing: CIDR CIDR: Classless InterDomain Routing m subnet portion of address of arbitrary length m address format: a.b.c.d/x, where x is # bits in subnet portion of address subnet part host part /23

Network Layer IP addresses: how to get one? Q: How does host get IP address? r hard-coded by system admin in a file m Wintel: control-panel->network->configuration- >tcp/ip->properties m UNIX: /etc/rc.config r DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server m “plug-and-play” (more in next chapter)

Network Layer IP addresses: how to get one? Q: How does network get subnet part of IP addr? A: gets allocated portion of its provider ISP’s address space ISP's block /20 Organization /23 Organization /23 Organization /23... ….. …. …. Organization /23

Network Layer Hierarchical addressing: route aggregation “Send me anything with addresses beginning /20” / / /23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning /16” /23 Organization Hierarchical addressing allows efficient advertisement of routing information:

Network Layer Hierarchical addressing: more specific routes ISPs-R-Us has a more specific route to Organization 1 “Send me anything with addresses beginning /20” / / /23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning /16 or /23” /23 Organization

Network Layer IP addressing: the last word... Q: How does an ISP get block of addresses? A: ICANN: Internet Corporation for Assigned Names and Numbers m allocates addresses m manages DNS m assigns domain names, resolves disputes

Network Layer Private Addresses r /8 r /12 r /16

Network Layer r Introduction r Virtual circuit and datagram networks r Routing algorithms m Link state m Distance Vector m Hierarchical routing r What’s inside a router m Input ports m Switching ports m Output ports m Queuing r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r Routing in the Internet m RIP m OSPF m BGP r Broadcast and multicast routing

Network Layer ICMP: Internet Control Message Protocol r used by hosts & routers to communicate network-level information m error reporting: unreachable host, network, port, protocol m echo request/reply (used by ping) r network-layer “above” IP: m ICMP msgs carried in IP datagrams r ICMP message: type, code plus first 8 bytes of IP datagram causing error Type Code description 0 0 echo reply (ping) 3 0 dest. network unreachable 3 1 dest host unreachable 3 2 dest protocol unreachable 3 3 dest port unreachable 3 6 dest network unknown 3 7 dest host unknown 4 0 source quench (congestion control - not used) 8 0 echo request (ping) 9 0 route advertisement 10 0 router discovery 11 0 TTL expired 12 0 bad IP header

Network Layer Traceroute and ICMP r Source sends series of UDP segments to dest m First has TTL =1 m Second has TTL=2, etc. m Unlikely port number r When nth datagram arrives to nth router: m Router discards datagram m And sends to source an ICMP message (type 11, code 0) m Message includes name of router& IP address r When ICMP message arrives, source calculates RTT r Traceroute does this 3 times Stopping criterion r UDP segment eventually arrives at destination host r Destination returns ICMP “host unreachable” packet (type 3, code 3) r When source gets this ICMP, stops.

Network Layer r Introduction r Virtual circuit and datagram networks r Routing algorithms m Link state m Distance Vector m Hierarchical routing r What’s inside a router m Input ports m Switching ports m Output ports m Queuing r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r Routing in the Internet m RIP m OSPF m BGP r Broadcast and multicast routing

Network Layer IPv6 r Initial motivation: 32-bit address space soon to be completely allocated. r Additional motivation: m header format helps speed processing/forwarding m header changes to facilitate QoS IPv6 datagram format: m fixed-length 40 byte header m no fragmentation allowed

Network Layer IPv6 Header (Cont) Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same “flow.” (concept of“flow” not well defined). Next header: identify upper layer protocol for data

Network Layer Other Changes from IPv4 r Checksum: removed entirely to reduce processing time at each hop r Options: allowed, but outside of header, indicated by “Next Header” field r ICMPv6: new version of ICMP m additional message types, e.g. “Packet Too Big” m multicast group management functions

Network Layer Transition From IPv4 To IPv6 r Not all routers can be upgraded simultaneous m no “flag days” m How will the network operate with mixed IPv4 and IPv6 routers? r Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

Network Layer Tunneling A B E F IPv6 tunnel Logical view: Physical view: A B E F IPv6 IPv4

Network Layer Tunneling A B E F IPv6 tunnel Logical view: Physical view: A B E F IPv6 C D IPv4 Flow: X Src: A Dest: F data Flow: X Src: A Dest: F data Flow: X Src: A Dest: F data Src:B Dest: E Flow: X Src: A Dest: F data Src:B Dest: E A-to-B: IPv6 E-to-F: IPv6 B-to-C: IPv6 inside IPv4 B-to-C: IPv6 inside IPv4

Network Layer r Introduction r Virtual circuit and datagram networks r Routing algorithms m Link state m Distance Vector m Hierarchical routing r What’s inside a router m Input ports m Switching ports m Output ports m Queuing r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r Routing in the Internet m RIP m OSPF m BGP r Broadcast and multicast routing

Network Layer Intra-AS Routing r Also known as Interior Gateway Protocols (IGP) r Most common Intra-AS routing protocols: m RIP: Routing Information Protocol m OSPF: Open Shortest Path First m IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

Network Layer r Introduction r Virtual circuit and datagram networks r Routing algorithms m Link state m Distance Vector m Hierarchical routing r What’s inside a router m Input ports m Switching ports m Output ports m Queuing r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r Routing in the Internet m RIP m OSPF m BGP r Broadcast and multicast routing

Network Layer RIP ( Routing Information Protocol) r Distance vector algorithm r Included in BSD-UNIX Distribution in 1982 r Distance metric: # of hops (max = 15 hops) D C BA u v w x y z destination hops u 1 v 2 w 2 x 3 y 3 z 2 From router A to subsets:

Network Layer RIP advertisements r Distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement) r Each advertisement: list of up to 25 destination nets within AS

Network Layer RIP: Example Destination Network Next Router Num. of hops to dest. wA2 yB2 zB7 x--1 ….…..... w xy z A C D B Routing table in D

Network Layer RIP: Example Destination Network Next Router Num. of hops to dest. wA2 yB2 zB A7 5 x--1 ….…..... Routing table in D w xy z A C D B Dest Next hops w - 1 x - 1 z C 4 …. …... Advertisement from A to D

Network Layer RIP: Link Failure and Recovery If no advertisement heard after 180 sec --> neighbor/link declared dead m routes via neighbor invalidated m new advertisements sent to neighbors m neighbors in turn send out new advertisements (if tables changed) m link failure info quickly propagates to entire net m poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

Network Layer RIP Table processing r RIP routing tables managed by application-level process called route-d (daemon) r advertisements sent in UDP packets, periodically repeated physical link network forwarding (IP) table Transprt (UDP) routed physical link network (IP) Transprt (UDP) routed forwarding table

Network Layer r Introduction r Virtual circuit and datagram networks r Routing algorithms m Link state m Distance Vector m Hierarchical routing r What’s inside a router m Input ports m Switching ports m Output ports m Queuing r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r Routing in the Internet m RIP m OSPF m BGP r Broadcast and multicast routing

Network Layer OSPF (Open Shortest Path First) r “open”: publicly available r Uses Link State algorithm m LS packet dissemination m Topology map at each node m Route computation using Dijkstra’s algorithm r OSPF advertisement carries one entry per neighbor router r Advertisements disseminated to entire AS (via flooding) m Carried in OSPF messages directly over IP (rather than TCP or UDP

Network Layer OSPF “advanced” features (not in RIP) r Security: all OSPF messages authenticated (to prevent malicious intrusion) r Multiple same-cost paths allowed (only one path in RIP) r For each link, multiple cost metrics for different TOS (e.g., satellite link cost set “low” for best effort; high for real time) r Integrated uni- and multicast support: m Multicast OSPF (MOSPF) uses same topology data base as OSPF r Hierarchical OSPF in large domains.

Network Layer Hierarchical OSPF

Network Layer Hierarchical OSPF r Two-level hierarchy: local area, backbone. m Link-state advertisements only in area m each nodes has detailed area topology; only know direction (shortest path) to nets in other areas. r Area border routers: “summarize” distances to nets in own area, advertise to other Area Border routers. r Backbone routers: run OSPF routing limited to backbone. r Boundary routers: connect to other AS’s.

Network Layer r Introduction r Virtual circuit and datagram networks r Routing algorithms m Link state m Distance Vector m Hierarchical routing r What’s inside a router m Input ports m Switching ports m Output ports m Queuing r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r Routing in the Internet m RIP m OSPF m BGP r Broadcast and multicast routing

Network Layer Internet inter-AS routing: BGP r BGP (Border Gateway Protocol): the de facto standard r BGP provides each AS a means to: 1. Obtain subnet reachability information from neighboring ASs. 2. Propagate the reachability information to all routers internal to the AS. 3. Determine “good” routes to subnets based on reachability information and policy. r Allows a subnet to advertise its existence to rest of the Internet: “I am here”

Network Layer BGP basics r Pairs of routers (BGP peers) exchange routing info over semi- permanent TCP conctns: BGP sessions r Note that BGP sessions do not correspond to physical links. r When AS2 advertises a prefix to AS1, AS2 is promising it will forward any datagrams destined to that prefix towards the prefix. m AS2 can aggregate prefixes in its advertisement 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c eBGP session iBGP session

Network Layer eBGP and iBGP r eBGP is BGP between two ASes m Advertises prefixes to other ASes m Implements routing policy, (whether or not re-advertise prefixes received from BGP peers) m eBGP peers are directly connected r iBGP m Advertises some or all prefixes learnt from eBGP m Advertises ISP’s customer prefixes (For example a network that is recently allocated to some customer) m These are not directly connected but form a fully connected logical graph

Network Layer Distributing reachability info r With eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1. r 1c can then use iBGP do distribute this new prefix reach info to all routers in AS1 r 1b can then re-advertise the new reach info to AS2 over the 1b-to-2a eBGP session r When router learns about a new prefix, it creates an entry for the prefix in its forwarding table. 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c eBGP session iBGP session

Network Layer Path attributes & BGP routes r When advertising a prefix, advert includes BGP attributes. m prefix + attributes = “route” r Two important attributes: m AS-PATH: contains the ASs through which the advert for the prefix passed: AS 67 AS 17 m NEXT-HOP: Indicates the specific internal-AS router to next-hop AS. (There may be multiple links from current AS to next-hop-AS.) r When gateway router receives route advert, uses import policy to accept/decline.

Network Layer eBGP Next Hop

Network Layer BGP route selection r Router may learn about more than 1 route to some prefix. Router must select route. r Elimination rules: 1. Local preference value attribute: policy decision 2. Shortest AS-PATH 3. Closest NEXT-HOP router: hot potato routing 4. Additional criteria

Network Layer BGP messages r BGP messages exchanged using TCP. r BGP messages: m OPEN: opens TCP connection to peer and authenticates sender m UPDATE: advertises new path (or withdraws old) m KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request m NOTIFICATION: reports errors in previous msg; also used to close connection

Network Layer BGP routing policy r A,B,C are provider networks r X,W,Y are customer (of provider networks) r X is dual-homed: attached to two networks m X does not want to route from B via X to C m.. so X will not advertise to B a route to C

Network Layer BGP routing policy (2) r A advertises to B the path AW r B advertises to X the path BAW r Should B advertise to C the path BAW? m No way! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers m B wants to force C to route to w via A m B wants to route only to/from its customers!

Network Layer Why different Intra- and Inter-AS routing ? Policy: r Inter-AS: admin wants control over how its traffic routed, who routes through its net. r Intra-AS: single admin, so no policy decisions needed Scale: r hierarchical routing saves table size, reduced update traffic Performance: r Intra-AS: can focus on performance r Inter-AS: policy may dominate over performance

Network Layer r Introduction r Virtual circuit and datagram networks r Routing algorithms m Link state m Distance Vector m Hierarchical routing r What’s inside a router m Input ports m Switching ports m Output ports m Queuing r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r Routing in the Internet m RIP m OSPF m BGP r Broadcast and multicast routing

Network Layer R1 R2 R3R4 source duplication R1 R2 R3R4 in-network duplication duplicate creation/transmission duplicate Broadcast Routing r Deliver packets from source to all other nodes r Source duplication is inefficient: r Source duplication: how does source determine recipient addresses?

Network Layer In-network duplication r Flooding: when node receives brdcst pckt, sends copy to all neighbors m Problems: cycles & broadcast storm r Controlled flooding: node only brdcsts pkt if it hasn’t brdcst same packet before m Node keeps track of pckt ids already brdcsted m Or reverse path forwarding (RPF): only forward pckt if it arrived on shortest path between node and source r Spanning tree m No redundant packets received by any node

Network Layer A B G D E c F A B G D E c F (a) Broadcast initiated at A (b) Broadcast initiated at D Spanning Tree r First construct a spanning tree r Nodes forward copies only along spanning tree

Network Layer A B G D E c F (a)Stepwise construction of spanning tree A B G D E c F (b) Constructed spanning tree Spanning Tree: Creation r Center node r Each node sends unicast join message to center node m Message forwarded until it arrives at a node already belonging to spanning tree

Multicast Routing: Problem Statement r Goal: find a tree (or trees) connecting routers having local mcast group members m tree: not all paths between routers used m source-based: different tree from each sender to rcvrs m shared-tree: same tree used by all group members Shared tree Source-based trees

Approaches for building mcast trees Approaches: r source-based tree: one tree per source m shortest path trees m reverse path forwarding r group-shared tree: group uses one tree m minimal spanning (Steiner) m center-based trees …we first look at basic approaches, then specific protocols adopting these approaches

Shortest Path Tree r mcast forwarding tree: tree of shortest path routes from source to all receivers m Dijkstra’s algorithm R1 R2 R3 R4 R5 R6 R i router with attached group member router with no attached group member link used for forwarding, i indicates order link added by algorithm LEGEND S: source

Reverse Path Forwarding if (mcast datagram received on incoming link on shortest path back to center) then flood datagram onto all outgoing links else ignore datagram  rely on router’s knowledge of unicast shortest path from it to sender  each router has simple forwarding behavior:

Reverse Path Forwarding: example result is a source-specific reverse SPT –may be a bad choice with asymmetric links R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member datagram will be forwarded LEGEND S: source datagram will not be forwarded

Reverse Path Forwarding: pruning r forwarding tree contains subtrees with no mcast group members m no need to forward datagrams down subtree m “prune” msgs sent upstream by router with no downstream group members R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member prune message LEGEND S: source links with multicast forwarding P P P

Shared-Tree: Steiner Tree r Steiner Tree: minimum cost tree connecting all routers with attached group members r problem is NP-complete r excellent heuristics exists r not used in practice: m computational complexity m information about entire network needed m monolithic: rerun whenever a router needs to join/leave

Center-based trees r single delivery tree shared by all r one router identified as “center” of tree r to join: m edge router sends unicast join-msg addressed to center router m join-msg “processed” by intermediate routers and forwarded towards center m join-msg either hits existing tree branch for this center, or arrives at center m path taken by join-msg becomes new branch of tree for this router

Center-based trees: an example Suppose R6 chosen as center: R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member path order in which join messages generated LEGEND