System-Biophysik Überblick Components Building Blocks Functional Modules System Lifes Complexity Pyramid (Oltvai-Barabasi, Science 10/25/02)

Slides:



Advertisements
Similar presentations
Course Evaluation Form About The Course -Go more slowly (||) -More lectures (||) -Problem Sets, Class Projects (|||) -Software tools About The Instructor.
Advertisements

The Structure of the Web Mark Levene (Follow the links to learn more!)
1 Generating Network Topologies That Obey Power LawsPalmer/Steffan Carnegie Mellon Generating Network Topologies That Obey Power Laws Christopher R. Palmer.
Peer-to-Peer and Social Networks Power law graphs Small world graphs.
Topology and Dynamics of Complex Networks FRES1010 Complex Adaptive Systems Eileen Kraemer Fall 2005.
Complex Networks: Complex Networks: Structures and Dynamics Changsong Zhou AGNLD, Institute für Physik Universität Potsdam.
Complex Networks Advanced Computer Networks: Part1.
Network analysis Sushmita Roy BMI/CS 576
Scale Free Networks.
Albert-László Barabási
The Architecture of Complexity: Structure and Modularity in Cellular Networks Albert-László Barabási University of Notre Dame title.
Emergence of Scaling in Random Networks Albert-Laszlo Barabsi & Reka Albert.
Analysis and Modeling of Social Networks Foudalis Ilias.
Week 5 - Models of Complex Networks I Dr. Anthony Bonato Ryerson University AM8002 Fall 2014.
VL Netzwerke, WS 2007/08 Edda Klipp 1 Max Planck Institute Molecular Genetics Humboldt University Berlin Theoretical Biophysics Networks in Metabolism.
Synopsis of “Emergence of Scaling in Random Networks”* *Albert-Laszlo Barabasi and Reka Albert, Science, Vol 286, 15 October 1999 Presentation for ENGS.
Information Retrieval Lecture 8 Introduction to Information Retrieval (Manning et al. 2007) Chapter 19 For the MSc Computer Science Programme Dell Zhang.
Weighted networks: analysis, modeling A. Barrat, LPT, Université Paris-Sud, France M. Barthélemy (CEA, France) R. Pastor-Satorras (Barcelona, Spain) A.
School of Information University of Michigan SI 614 Random graphs & power law networks preferential attachment Lecture 7 Instructor: Lada Adamic.
1 A Random-Surfer Web-Graph Model (Joint work with Avrim Blum & Hubert Chan) Mugizi Rwebangira.
Complex Networks Third Lecture TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA TexPoint fonts used in EMF. Read the.
Emergence of Scaling in Random Networks Barabasi & Albert Science, 1999 Routing map of the internet
The Barabási-Albert [BA] model (1999) ER Model Look at the distribution of degrees ER ModelWS Model actorspower grid www The probability of finding a highly.
Scale Free Networks Robin Coope April Abert-László Barabási, Linked (Perseus, Cambridge, 2002). Réka Albert and AL Barabási,Statistical Mechanics.
Proteome Network Evolution by Gene Duplication S. Cenk Şahinalp Simon Fraser University.
1 Complex systems Made of many non-identical elements connected by diverse interactions. NETWORK New York Times Slides: thanks to A-L Barabasi.
From Complex Networks to Human Travel Patterns Albert-László Barabási Center for Complex Networks Research Northeastern University Department of Medicine.
Network Design IS250 Spring 2010 John Chuang. 2 Questions  What does the Internet look like? -Why do we care?  Are there any structural invariants?
Regulatory networks 10/29/07. Definition of a module Module here has broader meanings than before. A functional module is a discrete entity whose function.
Web as Graph – Empirical Studies The Structure and Dynamics of Networks.
Peer-to-Peer and Grid Computing Exercise Session 3 (TUD Student Use Only) ‏
Sedgewick & Wayne (2004); Chazelle (2005) Sedgewick & Wayne (2004); Chazelle (2005)
Global topological properties of biological networks.
1 Algorithms for Large Data Sets Ziv Bar-Yossef Lecture 7 May 14, 2006
Network analysis and applications Sushmita Roy BMI/CS 576 Dec 2 nd, 2014.
Computer Science 1 Web as a graph Anna Karpovsky.
Peer-to-Peer and Social Networks Random Graphs. Random graphs E RDÖS -R ENYI MODEL One of several models … Presents a theory of how social webs are formed.
Large-scale organization of metabolic networks Jeong et al. CS 466 Saurabh Sinha.
Optimization Based Modeling of Social Network Yong-Yeol Ahn, Hawoong Jeong.
(Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Oct 16th, 2012.
Clustering of protein networks: Graph theory and terminology Scale-free architecture Modularity Robustness Reading: Barabasi and Oltvai 2004, Milo et al.
COM1721: Freshman Honors Seminar A Random Walk Through Computing Lecture 2: Structure of the Web October 1, 2002.
Weighted networks: analysis, modeling A. Barrat, LPT, Université Paris-Sud, France M. Barthélemy (CEA, France) R. Pastor-Satorras (Barcelona, Spain) A.
Emergence of Scaling and Assortative Mixing by Altruism Li Ping The Hong Kong PolyU
Social Network Analysis Prof. Dr. Daning Hu Department of Informatics University of Zurich Mar 5th, 2013.
Class 9: Barabasi-Albert Model-Part I
Lecture 10: Network models CS 765: Complex Networks Slides are modified from Networks: Theory and Application by Lada Adamic.
Network Evolution Statistics of Networks Comparing Networks Networks in Cellular Biology A. Metabolic Pathways B. Regulatory Networks C. Signaling Pathways.
Genome Biology and Biotechnology The next frontier: Systems biology Prof. M. Zabeau Department of Plant Systems Biology Flanders Interuniversity Institute.
LECTURE 2 1.Complex Network Models 2.Properties of Protein-Protein Interaction Networks.
Class 19: Degree Correlations PartII Assortativity and hierarchy
Network resilience.
Social Networking: Large scale Networks
Constructing and Analyzing a Gene Regulatory Network Siobhan Brady UC Davis.
Information Retrieval Search Engine Technology (10) Prof. Dragomir R. Radev.
Hierarchical Organization in Complex Networks by Ravasz and Barabasi İlhan Kaya Boğaziçi University.
Netlogo demo. Complexity and Networks Melanie Mitchell Portland State University and Santa Fe Institute.
Algorithms and Computational Biology Lab, Department of Computer Science and & Information Engineering, National Taiwan University, Taiwan Network Biology.
Cmpe 588- Modeling of Internet Emergence of Scale-Free Network with Chaotic Units Pulin Gong, Cees van Leeuwen by Oya Ünlü Instructor: Haluk Bingöl.
Network (graph) Models
Structures of Networks
Topics In Social Computing (67810)
Network biology : protein – protein interactions
Social Network Analysis
Peer-to-Peer and Social Networks Fall 2017
Peer-to-Peer and Social Networks
From the Synthetic networks slide deck (didn’t have a chance to go over them at that time) By: Ralucca Gera, NPS.
Modelling Structure and Function in Complex Networks
Network Science: A Short Introduction i3 Workshop
Diffusion in Networks
Presentation transcript:

System-Biophysik Überblick Components Building Blocks Functional Modules System Lifes Complexity Pyramid (Oltvai-Barabasi, Science 10/25/02)

Zum Begriff Bio-System Input Out- put * Komponenten (Spezien) * Netzwerkartige Verknüpfungen (kinetische Raten) * Substrukturen (Knoten,Module, Motive) * Funktionelle Input => Output Relation * Erforschung der Bauprinzipen (reverse engineering) Vorsicht : Bauprinzip nicht rational sondern Ergebnis eines Evolutionprozesses * Erstellung quantitativer Modelle zur Beschreibung des Systems Eigenschaften Ziel

Boehring-Mennheim Large Metabolic Networks: the usual view

Network Measures

Network Types Random Scale-Free Hierarchical

Network Types Random Scale-Free Hierarchical

Network Types Random Scale-Free Hierarchical

Metabolic networks at different levels of description

Metabolic networks: Rather Hierarchical than Scale-free

Jeong et al Nature Oct 00 =2.2

Scale-free complex networks

Highly clustered small worlds Nature June 4, 1998Aug

Finite size scaling: create a network with N nodes with P in (k) and P out (k) = log(N) 19 degrees of separation: The WWW is very big but not very wide l 15 =2 [1,2,5] l 17 =4 [1,3,4,6,7] … = ?? nd.edu 19 degrees of separation R. Albert et al Nature (99) based on 800 million webpages [S. Lawrence et al Nature (99)] A. Broder et al WWW9 (00) IBM 19 degrees

Nature July 27, 2000

Yeast protein interaction network red = lethal, green = non-lethal orange = slow growth yellow = unknown Topological robustness 10% proteins with k<5 are lethal BUT 60% proteins with k>15 are lethal

Construction of Scale-free networks These scale-free networks do not arise by chance alone. Erdős and Renyi (1960) studied a model of growth for graphs in which, at each step, two nodes are chosen uniformly at random and a link is inserted between them. The properties of these random graphs are not consistent with the properties observed in scale-free networks, and therefore a model for this growth process is needed. The scale-free properties of the Web have been studied, and its distribution of links is very close to a power law, because there are a few Web sites with huge numbers of links, which benefit from a good placement in search engines and an established presence on the Web. Those sites are the ones that attract more of the new links. This has been called the winners take all phenomenon. The mostly widely accepted generative model is Barabasi and Albert's (1999) rich get richer generative model in which each new Web page creates links to existent Web pages with a probability distribution which is not uniform, but proportional to the current in-degree of Web pages. This model was originally discovered by Derek de Solla Price in 1965 under the term cumulative advantage, but did not reach popularity until Barabasi rediscovered the results under its current name. According to this process, a page with many in-links will attract more in-links than a regular page. This generates a power-law but the resulting graph differs from the actual Web graph in other properties such as the presence of small tightly connected communities. More general models and networks characteristics have been proposed and studied (for a review see the book by Dorogovtsev and Mendes). A different generative model is the copy model studied by Kumar et al. (2000), in which new nodes choose an existent node at random and copy a fraction of the links of the existent node. This also generates a power law. However, if we look at communities of interests in a specific topic, discarding the major hubs of the Web, the distribution of links is no longer a power law but resembles more a normal distribution, as observed by Pennock et al. (2002) in the communities of the home pages of universities, public companies, newspapers and scientists. Based on these observations, the authors propose a generative model that mixes preferential attachment with a baseline probability of gaining a link. en.wikipedia.org

The origin of the scale-free topology and hubs in biological networks Evolutionary origin of scale-free networks

The origin of the scale-free topology and hubs in biological networks Evolutionary origin of scale-free networks

Beyond Networktopology Flux-Balance-Analysis

Zusammenfassung Biologische Netzwerke Netzwerke haben eine hierachische Struktur - Komponenten, Blöcke, funktionelle Module, System Universelle Eigenschaften komplexer Netzwerke * small world property (kurze Verbindungswege) * skaleninvarianz (Verteilung der connectivity) * Starke Tendenz zu Clustern Große Zahl und inhomogene Komponenten Experimenteller Input durch: * Hochdurchsatztechniken / Datenbanken * Systematische Literaturanalyse (data-mining)