Amospheric inversions: Investigating the recent inter-annual flux variations ! P. Peylin, C. Rödenbeck, P. Rayner, experimentalists, … Inverse models Data.

Slides:



Advertisements
Similar presentations
Formaldehyde columns from GOME as a proxy for biogenic emissions over Europe Università degli Studi dellAquila – CETEMPS LAquila, ITALY
Advertisements

Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
1 Eloise E. Kaizar The Ohio State University Combining Information From Randomized and Observational Data: A Simulation Study June 5, 2008 Joel Greenhouse.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Peter Cox (Met Office) Martin Heimann, Wolfgang Knorr (MPI-BGC) Tony Hollingsworth, Richard Engelen (ECMWF) Philippe Ciais, Philippe Peylin (LSCE) Alain.
Peter Cox (Met Office) Martin Heimann, Wolfgang Knorr (MPI-BGC) Tony Hollingsworth, Richard Engelen (ECMWF) Philippe Ciais, Philippe Peylin (LSCE) Alain.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Extended range forecasts at MeteoSwiss: User experience.
Page 1© Crown copyright 2004 Seasonal forecasting activities at the Met Office Long-range Forecasting Group, Hadley Centre Presenter: Richard Graham ECMWF.
Mean, Median, Mode & Range
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Some questions in current climate and CO 2 studies.
Break Time Remaining 10:00.
The basics for simulations
Computer vision: models, learning and inference
1..
Resolving CO 2 Flux Estimates from Atmospheric Inversions and Inventories in the Mid-Continent Region Stephen M. Ogle 1, Andrew Schuh 1, Dan Cooley 1,
Methane inversion from satellite, TRANSCOM meeting, Jena,12-15 May 2003 Inversion strategy 4D-var method adjoint model of TM3 CH4-only version has been.
Clock will move after 1 minute
PSSA Preparation.
Correlation and Linear Regression
Regional flux estimates of CO2 and CH4 inferred from GOSAT XCH4:XCO2 ratios Liang Feng Annemarie Fraser Paul Palmer University of Edinburgh Hartmut Bösch.
Quantification of the sensitivity of NASA CMS-Flux inversions to uncertainty in atmospheric transport Thomas Lauvaux, NASA JPL Martha Butler, Kenneth Davis,
Atmospheric Inversion results Philippe Peylin LSCE, France Rachel Law CSIRO, Australia Kevin Gurney, Xia Zhang Arizona State University/Purdue University,
Slides for IPCC. Inverse Modeling of CO 2 Air Parcel Sources Sinks wind Sample Changes in CO 2 in the air tell us about sources and sinks Atmospheric.
Data assimilation of trace gases in a regional chemical transport model: the impact on model forecasts E. Emili 1, O. Pannekoucke 1,2, E. Jaumouillé 2,
Virtual Tall Towers and Inversions or How to Make Productive Use of Continental CO 2 Measurements in Global Inversions Martha Butler The Pennsylvania State.
Estimation of daily CO 2 fluxes over Europe by inversion of atmospheric continuous data C. Carouge and P. Peylin ; P. Bousquet ; P. Ciais ; P. Rayner Laboratoire.
TransCom 3 Level 2 Base Case Inter-annual CO 2 Flux Inversion Results Current Status David Baker, Rachel Law, Kevin Gurney, Peter Rayner, TransCom3 L2.
Atmospheric Research Inverting high temporal frequency data: latest results Rachel Law Peter Rayner, Ying-Ping Wang Law et al., GBC, 16(4), 1053, doi: /2001GB001593,
NOCES meeting Plymouth, 2005 June Top-down v.s. bottom-up estimates of air-sea CO 2 fluxes : No winner so far … P. Bousquet, A. Idelkadi, C. Carouge,
Improving and extending CMS land surface carbon flux products including estimates of uncertainties in fluxes and biomass. Jim Collatz, Randy Kawa, Lesley.
FEW RESULTS LINKED TO INVERSE MODELING at LSCE - IAV comparison from 3 inversions - Impact of Obs. error correlations - How to define flux error correlations.
Inversion of continuous data over Europe : a pseudo-data analysis. C. Carouge and P. Peylin ; P. Bousquet ; P. Ciais ; P. Rayner Laboratoire des Sciences.
Interannual inversions with continuous data and recent inversions with the CSIRO CC model Rachel Law, CSIRO Atmospheric Research Another set of pseudodata.
Interannual variability across sites: Bridging the gap between flux towers and flasks Goals Obtain a mechanistic understanding of tower-scale interannual.
Optimising ORCHIDEE simulations at tropical sites Hans Verbeeck LSM/FLUXNET meeting June 2008, Edinburgh LSCE, Laboratoire des Sciences du Climat et de.
Carboeurope Annual Meeting Poznan, 8-12 Oct Recent CO 2 gradients over Europe M.Ramonet, P.Ciais et al.
Sharon M. Gourdji, K.L. Mueller, V. Yadav, A.E. Andrews, M. Trudeau, D.N. Huntzinger, A.Schuh, A.R. Jacobson, M. Butler, A.M. Michalak North American Carbon.
Diurnal cycles of fossil fuel CO 2 : Comparison of model results with observations at Heidelberg and Schauinsland Felix Vogel 1 including work of: I. Levin.
CO over South America Modeling inter annual variability of biomass burning emissions Pim Hooghiemstra & Maarten Krol 28 November 2011 – TM meeting.
An Assessment of the Carbon Balance of Arctic Tundra in North America: Comparisons among Observations, Models, and Atmospheric inversions A. David McGuire.
Regional Inversion of continuous atmospheric CO 2 measurements A first attempt ! P., P., P., P., and P. Philippe Peylin, Peter Rayner, Philippe Bousquet,
Validating the GHG production chain at multiple levels Julia Marshall (MPI-BGC), Richard Engelen (ECMWF), Cyril Crevoisier (LMD), Peter Bergamaschi (JRC),
CO 2 and O 2 Concentration Measurements Britton Stephens, NCAR/ATD Peter Bakwin, NOAA/CMDL Global carbon cycle Regional scale CO 2 measurements Potential.
Integration of biosphere and atmosphere observations Yingping Wang 1, Gabriel Abramowitz 1, Rachel Law 1, Bernard Pak 1, Cathy Trudinger 1, Ian Enting.
P. K. Patra*, R. M. Law, W. Peters, C. Rodenbeck et al. *Frontier Research Center for Global Change/JAMSTEC Yokohama, Japan.
Development of an EnKF to estimate CO 2 fluxes from realistic distributions of X CO2 Liang Feng, Paul Palmer
# # # # An Application of Maximum Likelihood Ensemble Filter (MLEF) to Carbon Problems Ravindra Lokupitiya 1, Scott Denning 1, Dusanka Zupanski 2, Kevin.
Quantitative network design for biosphere model process parameters E. Koffi 1, P. Rayner 1, T. Kaminski 2, M. Scholze 3, M. Voßbeck 2, and R. Giering 2.
An attempt to quantify fossil fuel CO 2 over Europe Ute Karstens 1, Ingeborg Levin 2 1 Max-Planck-Institut für Biogeochemie, Jena 2 Institut für Umweltphysik,
Evaluation of CO and SF 6 as quantitative tracers for fossil fuel CO 2 : The Experimentalists’ view Ingeborg Levin 1, Ute Karstens 2, Ulrike Gamnitzer.
Evaluation of CO and SF 6 as quantitative tracers for fossil fuel CO 2 : The Experimentalists’ view Ingeborg Levin 1, Ute Karstens 2, Ulrike Gamnitzer.
Combined 14 CO 2 and CO Observations: A key to high-resolution fossil fuel CO 2 records ? ! Ingeborg Levin 1 and Ute Karstens 2 1 Institut für Umweltphysik.
Cheas 2006 Meeting Marek Uliasz: Estimation of regional fluxes of CO 2 … Cheas 2006 Meeting Marek Uliasz: Estimation of regional fluxes of CO 2 …
Intercomparison of Mesoscale and Global Atmospheric Transport Models over Western Europe P. Ciais2), A.T. Vermeulen1), C. Geels3), P. Peylin2), M. Gloor4),
FastOpt CAMELS A prototype Global Carbon Cycle Data Assimilation System (CCDAS) Wolfgang Knorr 1, Marko Scholze 2, Peter Rayner 3,Thomas Kaminski 4, Ralf.
Earth Observation Data and Carbon Cycle Modelling Marko Scholze QUEST, Department of Earth Sciences University of Bristol GAIM/AIMES Task Force Meeting,
Hauglustaine et al. - HYMN KO Meeting th October Forward modelling with the LMDz-INCA coupled climate-chemistry model; Inverse modelling and data.
Using atmospheric CO2 data More than 100 CO2 records Use LMDz model as an “offline” transport tool based on “retro-plumes” (pre-calculated response function)
ESF workshop on methane, April 10-12, years of methane : from global to regional P. Bousquet, S. Kirschke, M. Saunois, P. Ciais, P. Peylin, R.
PKU-LSCE winter shool, 14 October 2014 Global methane budget : The period Philippe Bousquet 1, Robin Locatelli 1, Shushi Peng 1, and Marielle.
Potential of 14 CO 2 to constrain emissions at country scale Y. Wang, G. Broquet, P. Ciais, F. Vogel, F. Chevallier, N. Kadygrov, L. Wu, R. Wang, S. Tao.
Copernicus Atmosphere Monitoring Service CAMS General Assembly, Athens, June 2016 Frédéric Chevallier (LSCE/IPSL) Rona Thompson (NILU) Arjo Segers.
Role of ECVs in climate-carbon feedback assessment Claire Magand Patricia Cadule, Jean-Louis Dufresne Institut Pierre Simon Laplace CMUG Integration Meeting,
CO2 sources and sinks in China as seen from the global atmosphere
“Biosphere Experiment” Intercomparison of atmospheric CO2 simulations based on biosphere fluxes from different terrestrial ecosystem models U. Karstens,
Directions of Inquiry Given a fixed atmospheric CO2 concentration assimilation scheme, what is the optimal network expansion? Given the wide array of available.
Atlantic Ocean Forcing of North American and European Summer Climate
Hartmut Bösch and Sarah Dance
CO2 and O2 Concentration Measurements
Presentation transcript:

Amospheric inversions: Investigating the recent inter-annual flux variations ! P. Peylin, C. Rödenbeck, P. Rayner, experimentalists, … Inverse models Data signal Net carbon fluxes ? inter-annual flux time series 2003 summer flux annomaly

2 independent inversions ( Similarities / differences ) : LSCEMPI Time-dependent Bayesian Inversion / Solve for pixel fluxes LMDz (2.5° x 3.7°) TM3 (4° x 5°) ORCHIDEE mean fluxes & GFED priors Distance / Biome correlation generic No IAV prior & GFED priors distance correlation Observations : transport model : Prior information Inverse approach : Monthly mean conc. Individual flask / hourly data -> Monthly fluxes -> ~ Weekly fluxes CSIRO Time – independent 140 regions Montlhy CO2 + 13CO2 Match (4° x 4°) CASA model No IAV prior

Raw data / Fit (use in LSCE inversion) Deviation from a linear fit of winter (DJF) / summer (JAS) mean values CMN SCH CMN SCH (Ppm)

European scale: raw fluxes Pixgro Mod17 ANN JENA_ref ORCHIDEE LPJ JULES BIOME-BGC bottum-up range

European scale: raw fluxes Pixgro Mod17 ANN JENA_ref LSCE_ref LSCE_ObsJena ORCHIDEE LPJ JULES BIOME-BGC bottum-up range

European scale: raw fluxes Pixgro Mod17 ANN JENA_ref LSCE_ref LSCE_ObsJena CSIRO_ Peter T3 mean ORCHIDEE LPJ JULES BIOME-BGC bottum-up range

Annual land fluxes : LSCELSCE (Jena obs) JENACSIRO Europe N. Asia ,27 -0, Mean over In GtC / year -> Impact of fossil fuel emissions : Differences between Edgar and IER up to ~ 0.2 Gt / year Net annual fluxes not robust yet !

Flux anomalies filtered fluxes : 120 days

Continental scale: 120 days filtered Agreement for the major anomalies ! JENA_ref JENA_s99 LSCE_ref LSCE_ObsJena

European scale: « flux anomalies » Pixgro Mod17 ANN ORCHIDEE LPJ JULES BIOME-BGC bottum-up range De-seasonnalised + zero mean + filtering high freq. (< 120 days) JENA_ref

European scale: « flux anomalies » Pixgro Mod17 ANN ORCHIDEE LPJ JULES BIOME-BGC bottum-up range De-seasonnalised + zero mean + filtering high freq. (< 120 days) JENA_ref LSCE_ref LSCE_ObsJena

European scale: « flux anomalies » Pixgro Mod17 ANN ORCHIDEE LPJ JULES BIOME-BGC bottum-up range De-seasonnalised + zero mean + filtering high freq. (< 120 days) JENA_ref LSCE_ref LSCE_ObsJena CSIRO_ Peter T3 mean

European sub-region: (120 days filtering) North Europe West Europe Central Europe MPI_ref MPI_s99 LSCE_ObsJena LSCE_new bottum-up range

MPI_ref MPI_s99 LSCE_ObsJena LSCE_new bottum-up range European sub-region: summer anomalies (Jul-Aug-Sep) North Europe West Europe Central Europe

LSCE ref ORCHIDEE gC/m2/mth Biome BGC June – July – August anomalies LPJ MPI Ref JULES

MPI Annual anomalies BIOME LSCE

LPJ ORCHIDEE JULES Annual anomalies

Robustness is scale dependant Uncertainties increase with decreasing spatial scale Prior fluxes & errors / correlations are critical ! Summary Major flux anomalies are seen by two completely independent inverse approaches Net annual fluxes : remain uncertain at European scale But Future Synthesis under preparation ! Use additional data CCDAS approach ! Using regional/better Models & more data will reduce the uncertainties

Pixel based inversion LMDz zoomed over Europe (0.5 x 0.5 degres over Europe) Daily fluxes Using Pseudo-data 10 sites (continuous) Prior fluxes from TURC model + random noise TRUE fluxes from ORCHIDEE + random noise Potential of the current network : perfect transport experiment !

Correlation & Normalized standard deviation between True fluxes and Estimated fluxes Spatial aggregation (km) temporal aggregation (days) Correlation priorNSD prior Correlation posteriorNSD posterior

LSCE ref LSCE (ObsMPI ) MPI Ref gC/m2/mth MPI old case June – July – August anomalies

Error reduction on estimated CO 2 fluxes 2001 surface networkFuture surface network % of error reduction Carouge, phd, 2006.

Case with large noise (equivalent to real data inversion) compute Correlation & Normalized standard deviation between True fluxes & Estimated fluxes

Raw data / Fit (use in LSCE inversion) Deviation from a linear fit of summer (JAS) mean values Monte Cimone Schauinsland (Ppm) Atmospheric data :

Annual land fluxes : LSCELSCE (Jena obs) JENA (old ref) Europe N. Asia ,27 -0,18 Mean over In GtC / year -> Impact of fossil fuel emissions : Differences between Edgar and IER up to ~ 0.2 Gt / year Net annual fluxes not robust yet !