Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Capacitors.

Slides:



Advertisements
Similar presentations
Capacitance and Dielectrics
Advertisements

Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Unit 2 Day 3: Electric Energy Storage Electric potential energy stored between capacitor plates Work done to add charge to the capacitor plates Energy.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Copyright © 2009 Pearson Education, Inc. Dielectrics.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 17 Electric Potential.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 20 Physics, 4 th Edition James S. Walker.
Electric Potential Chapter 23 opener. We are used to voltage in our lives—a 12-volt car battery, 110 V or 220 V at home, 1.5 volt flashlight batteries,
Capacitance and Dielectrics
Electric Potential AP Physics: M. Blachly Textbook: 17:1-3.
I Chapter 25 Electric Currents and Resistance HW7: Due Monday, March 30; Chap.24: Pb.32,Pb.35,Pb.59 Chap.25: Pb.19,Pb.25,Pb.31.
UNIT 9 Electrostatics and Currents 1. Tuesday March 20 th 2 Electrostatics and Currents.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2009 Pearson Education, Inc. Lecture 5 - Capacitance Capacitors & Dielectrics.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Capacitance and Dielectrics
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2009 Pearson Education, Inc. May Term in Guatemala GDS 3559/STS 3500: Engineering Public Health: An Interdisciplinary Exploration of Community.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Current Conservation of current Batteries Resistance and resistivity Simple.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 30. Potential and Field To understand the production of electricity.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Conservation of energy Work and Delta PE Electric potential energy Electric.
Capacitance.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Capacitors.
Copyright © 2009 Pearson Education, Inc. Various Capacitors Chapter 24 : Capacitance & Dielectrics. (in the book by Giancoli). Chapter 26 in our book.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 17: Electric Potential 1.  As in earlier chapters on mechanics we learned that energy is conserved; it is neither created nor destroyed but is.
Electric Potential. Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative – potential energy can be defined.
Chapter 17 Electric Potential. Objectives: The students will be able to: Given the dimensions, distance between the plates, and the dielectric constant.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric energy (Electric Potential Energy) Electric potential Gravitation.
Chapter 17 Electric Energy and Capacitance. Work and Potential Energy For a uniform field between the two plates As the charge moves from A to B, work.
Chapter 18 Electrical Energy and Capacitance. Chapter 18 Objectives Electrical potential Electric Potential from a Point Charge Capacitance Parallel Plate.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage.
Chapter 17 Electric Potential.
Electric Energy and Capacitance
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Capacitors.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Chapter 16 Electrical Energy and Capacitance. Objectives Electrical potential Electric Potential from a Point Charge Electron Volt Capacitance Parallel.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Dot Product Review of Energy Model from Physics 1 Conservation of energy.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric energy (Electric Potential Energy) Electric potential Gravitation.
Chapter 16 Electrical Energy AndCapacitance. General Physics Review - Electric Potential for a system of point charges.
Capacitance Physics Montwood High School R. Casao.
Chapter 25 Lecture 20: Capacitor and Capacitance.
Chapter 23 Electric Potential. Basics The potential due to an electric dipole is just the sum of the potentials due to each charge, and can be calculated.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Equipotential.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Chapter 21 Electric Potential Topics: Sample question:
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Conservation of energy Work and Delta PE Electric potential energy Electric.
I Chapter 25 Electric Currents and Resistance. I Problem (II) A 0.50μF and a 0.80 μF capacitor are connected in series to a 9.0-V battery. Calculate.
Chapter 13 Electric Energy and Capacitance. Electric Potential Energy The electrostatic force is a conservative force It is possible to define an electrical.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Capacitors in Series & Parallel
Electric Energy and Capacitance
Electric Potential Energy and Potential Difference
Chapter 17 Electric Potential
Capacitors in Series & Parallel
Electric Potential and Capacitance.
Physics: Principles with Applications, 6th edition
Phys102 Lecture 7/8 Capacitors
Chapter 17 Electric Potential
How much work must be done to bring three electrons from a great distance apart to within m from one another?
Chapter 23 Electric Potential.
Physics for Scientists and Engineers, with Modern Physics, 4th edition
Presentation transcript:

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Capacitors and Capacitance Chapter 21 Electric Potential Topics: Sample question: Shown is the electric potential measured on the surface of a patient. This potential is caused by electrical signals originating in the beating heart. Why does the potential have this pattern, and what do these measurements tell us about the heart’s condition?

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Discussion of other units for Energy and E-field Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. eV – electron Volts => Unit of energy for particle accelerators The energy gained by an electron that goes through a potential difference of one volt 1 eV = 1.60 x J V/m – Volts per meter => Unit of Electric Field |Delta V| = |E||Delta r| => |E| = |Delta V| / |Delta r| [E] = V / m

Batteries The potential difference between the terminals of a battery, often called the terminal voltage, is the battery’s emf. Slide ∆ V bat = =  W chem q ____

Parallel Plate Capacitor Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Parallel Plate Capacitor Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. (a) Parallel-plate capacitor connected to battery. (b) Battery and Capacitor in a circuit diagram. Relationship of E-field & Delta V? Delta V

Define Capacitance Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Capacitance is a measure of how much charge can be stored in a capacitor for a given amount of voltage

The Capacitance of a Parallel-Plate Capacitor Slide 21-31

Capacitance and Capacitors The charge ±Q on each electrode is proportional to the potential difference ΔV C between the electrodes: Slide 21-29

Charging a Capacitor Slide 21-30

Capacitors Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Note: Battery is a source of constant potential What happens when you pull the plates of a capacitor apart? With a Battery connected With no Battery connected Do the following quantities (a) increase, (b) decrease, or (c) remain the same: Charge E-Field Delta V

Dielectrics and Capacitors

The molecules in a dielectric tend to become oriented in a way that reduces the external field. This means that the electric field within the dielectric is less than it would be in air, allowing more charge to be stored for the same potential.

Dielectric Constant With a dielectric between its plates, the capacitance of a parallel-plate capacitor is increased by a factor of the dielectric constant κ: Dielectric strength is the maximum field a dielectric can experience without breaking down.

Energy stored in Capacitor – Storing Energy in E-field Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

Energy stored in Capacitor – Storing Energy in E-field Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A charged capacitor stores electric energy; the energy stored is equal to the work done to charge the capacitor.

Storage of Electric Energy The energy density, defined as the energy per unit volume, is the same no matter the origin of the electric field: (17-11) The sudden discharge of electric energy can be harmful or fatal. Capacitors can retain their charge indefinitely even when disconnected from a voltage source – be careful!

Capacitors and Capacitance (Key Equations) Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Capacitance C = |Q| / |Delta V| Property of the conductors and the dielectric Special Case - Parallel Plate Capacitor C = Kappa * Epsilon 0 *A / d Energy Pe e = 1/2 |Q| |Delta V| |Delta V| = Ed

Properties of a Current Slide 22-8

Light the Bulb Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Can you light a bulb when you have 1 battery 1 Bulb 1 wire A - yes B - no

Definition of a Current Slide 22-9

Batteries The potential difference between the terminals of a battery, often called the terminal voltage, is the battery’s emf. Slide ∆ V bat = =  W chem q ____

Storage of Electric Energy Heart defibrillators use electric discharge to “jump-start” the heart, and can save lives.

The Electrocardiogram (ECG or EKG) The electrocardiogram detects heart defects by measuring changes in potential on the surface of the heart.

Capacitors Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Note: Battery is a source of constant potential What happens when you insert a dielectric? With a Battery connected With no Battery connected Do the following quantities (a) increase, (b) decrease, or (c) remain the same: Charge E-Field Delta V Energy stored