CS212: OPERATING SYSTEM Lecture 6: Virtual-Memory Management 1 Computer Science Department.

Slides:



Advertisements
Similar presentations
Chapter 10: Virtual Memory
Advertisements

Background Virtual memory – separation of user logical memory from physical memory. Only part of the program needs to be in memory for execution. Logical.
Chapter 9: Virtual Memory
Chapter 9 Virtual Memory Bernard Chen 2007 Spring.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 36 Virtual Memory Read.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Lecture 13: Main Memory (Chapter 8)
Virtual Memory Management G. Anuradha Ref:- Galvin.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 9: Virtual Memory.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory OSC: Chapter 9. Demand Paging Copy-on-Write Page Replacement.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Module 9: Virtual Memory
Module 10: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing.
Chapter 9: Virtual-Memory Management. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 9: Virtual Memory Background Demand Paging.
Virtual Memory Background Demand Paging Performance of Demand Paging
Virtual Memory Introduction to Operating Systems: Module 9.
Virtual Memory Management
Instructor: Umar KalimNUST Institute of Information Technology Operating Systems Virtual Memory.
03/26/2010CSCI 315 Operating Systems Design1 Virtual Memory Notice: The slides for this lecture have been largely based on those accompanying an earlier.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Chapter 10: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 10: Virtual Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
03/22/2004CSCI 315 Operating Systems Design1 Virtual Memory Notice: The slides for this lecture have been largely based on those accompanying the textbook.
03/17/2008CSCI 315 Operating Systems Design1 Virtual Memory Notice: The slides for this lecture have been largely based on those accompanying the textbook.
Chapter 9: Virtual Memory. Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
Silberschatz, Galvin and Gagne ©2011 Operating System Concepts Essentials – 8 th Edition Chapter 9: Virtual Memory.
Operating Systems Chapter 8
Cosc 4740 Chapter 8 Virtual Memory. Background Code needs to be in memory to execute, but entire program rarely used –Error code, unusual routines, large.
Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
Page 110/20/2015 CSE 30341: Operating Systems Principles So far…  Page  Fixed size pages solve page allocation problem (and external fragmentation) 
SWE202 Review. Processes Process State As a process executes, it changes state – new: The process is being created – running: Instructions are being.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Background Virtual memory –
Silberschatz, Galvin and Gagne Operating System Concepts Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples Operating.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Page Replacement Allocation of.
9.1 Silberschatz, Galvin and Gagne ©2003 Operating System Concepts Chapter 9: Virtual-Memory Management Background Demand Paging Page Replacement Allocation.
Virtual Memory. Background Virtual memory is a technique that allows execution of processes that may not be completely in the physical memory. Virtual.
Operating Systems (CS 340 D) Princess Nora University Faculty of Computer & Information Systems Computer science Department.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9 th Edition Chapter 9: Virtual-Memory Management.
Operating Systems (CS 340 D) Princess Nora University Faculty of Computer & Information Systems Computer science Department.
CS307 Operating Systems Virtual Memory Fan Wu Department of Computer Science and Engineering Shanghai Jiao Tong University Spring 2012.
Virtual Memory Various memory management techniques have been discussed. All these strategies have the same goal: to keep many processes in memory simultaneously.
Silberschatz, Galvin and Gagne  Operating System Concepts Virtual Memory Virtual memory – separation of user logical memory from physical memory.
Lecture 19 Virtual Memory Demand Paging. Background Virtual memory – separation of user logical memory from physical memory. –Only part of the program.
Chapter 9: Virtual-Memory Management. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Principles Chapter 9: Virtual-Memory Management 9.1 Background.
1 Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples (not covered.
10.1 Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual-Memory Management.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Background Virtual memory – separation of user logical memory.
Chapter 9: Virtual Memory
SLC/VER1.0/OS CONCEPTS/OCT'99
Virtual Memory CSSE 332 Operating Systems
Chapter 9: Virtual Memory – Part I
Chapter 9: Virtual Memory
Chapter 9: Virtual Memory
Module 9: Virtual Memory
Chapter 9: Virtual Memory
O.S Lecture 13 Virtual Memory.
Chapter 9: Virtual-Memory Management
Operating Systems Lecture November 2018.
What Happens if There is no Free Frame?
5: Virtual Memory Background Demand Paging
Chapter 9: Virtual Memory
Chapter 9: Virtual Memory
Chapter 9: Virtual Memory
Chapter 6 Virtual Memory
Module 9: Virtual Memory
Chapter 9: Virtual Memory
Presentation transcript:

CS212: OPERATING SYSTEM Lecture 6: Virtual-Memory Management 1 Computer Science Department

Chapter 9: Virtual-Memory Management  Background  Demand Paging  Page Replacement  Allocation of Frames  Thrashing 2

Objectives  To describe the benefits of a virtual memory system  To explain the concepts of demand paging, page- replacement algorithms, and allocation of page frames 3

Background  Virtual memory – separation of user logical memory from physical memory.  Only part of the program needs to be in memory for execution  Logical address space can therefore be much larger than physical address space  Allows address spaces to be shared by several processes  Allows for more efficient process creation  Virtual memory can be implemented via:  Demand paging  Demand segmentation 4

Virtual Memory That is Larger Than Physical Memory  5

Virtual-address Space 6

Shared Library Using Virtual Memory 7

Demand Paging  Bring a page into memory only when it is needed  Less I/O needed  Less memory needed  Faster response  More users  Page is needed  reference to it  invalid reference  abort  not-in-memory  bring to memory  Lazy swapper – never swaps a page into memory unless page will be needed  Swapper that deals with pages is a pager 8

Transfer of a Paged Memory to Contiguous Disk Space 9

Valid-Invalid Bit  With each page table entry a valid–invalid bit is associated (v  in-memory, i  not-in-memory)  Initially valid–invalid bit is set to i on all entries  Example of a page table snapshot:  During address translation, if valid–invalid bit in page table entry is I  page fault v v v v i i i …. Frame #valid-invalid bit page table 10

Page Table When Some Pages Are Not in Main Memory 11

Page Fault  If there is a reference to a page, first reference to that page will trap to operating system: page fault 1. Operating system looks at another table to decide:  Invalid reference  abort  Just not in memory 2. Get empty frame 3. Swap page into frame 4. Reset tables 5. Set validation bit = v 6. Restart the instruction that caused the page fault 12

Steps in Handling a Page Fault 13

Page Replacement What happens if there is no free frame? The solution:  Page replacement – find some page in memory, but not really in use, swap it out  algorithm  performance – want an algorithm which will result in minimum number of page faults  Same page may be brought into memory several times 14

Need For Page Replacement 15

Basic Page Replacement 1. Find the location of the desired page on disk 2. Find a free frame: - If there is a free frame, use it - If there is no free frame, use a page replacement algorithm to select a victim frame 3. Bring the desired page into the (newly) free frame; update the page and frame tables 4. Restart the process 16

Page Replacement 17

Thrashing  If a process does not have “enough” frames, the page-fault rate is very high. This leads to:  low CPU utilization  operating system thinks that it needs to increase the degree of multiprogramming  another process added to the system  Thrashing  a process is busy swapping pages in and out  A process is thrashing if it is spending more time paging than executing. 18