早期宇宙强相互作用物质演化 的非微扰 QCD 研究 刘玉鑫 ( Yuxin Li u ) 北京大学物理学院理论物理研究所 Department of Physics, Peking University, China 第十四届全国核结构大会,湖州师院, 2012 年.

Slides:



Advertisements
Similar presentations
Hadrons in Medium via DSE Yuxin Liu Department of Physics, Peking University The 1st Sino-Americas Workshop and School on the Bound- state.
Advertisements

Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
Duke University Chiho NONAKA in Collaboration with Masayuki Asakawa (Kyoto University) Hydrodynamical Evolution near the QCD Critical End Point November,
2+1 Flavor Polyakov-NJL Model at Finite Temperature and Nonzero Chemical Potential Wei-jie Fu, Zhao Zhang, Yu-xin Liu Peking University CCAST, March 23,
第十届 QCD 相变与相对论重离子物理研讨会, August Z. Zhang,
Nucleon Effective Mass in the DBHF 同位旋物理与原子核的相变 CCAST Workshop 2005 年 8 月 19 日- 8 月 21 日 马中玉 中国原子能科学研究院.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
第十四届全国核结构大会暨第十次全国核结构专题讨论会 浙江 · 湖州 · Nuclear matter with chiral forces in Brueckner-Hartree-Fock approximation 李增花 复旦大学核科学与技术系(现代物理研究所)
The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
Heavy-quark Potential by AdS/CFT and Color SuperCond. in Dense QCD 侯德富 华中师范大学粒子物理研究所 十三届中高能核物理大会,合肥.
核子结构的 “ 新 ” 图像 陈相松 四川大学 华中科技大学. 提要 核子结构研究的目标 终极目标与阶段性目标 核子结构图像的 “ 演化 ” : 原始图像、 “ 标准 ” 图像、 “ 新 ” 图像 [1]Phys.Rev.Lett.100:032002(2008) [2]Phys.Rev.Lett.103:062001(2009)
核色动力学导论 --- 用量子色动力学描绘 现代核物理的蓝图 何汉新 中国原子能科学研究院. An Introduction to Nuclear QCD -- QCD and its applications to the systems of nucleon and nuclear structure.
Lattice QCD at finite temperature Péter Petreczky Physics Department and RIKEN-BNL Winter Workshop on Nuclear Dynamics, March 12-18, 2006 Bulk thermodynamics.
1 相对论重离子碰撞中  介子的产生 陈金辉 中国科学院上海应用物理研究所 QCD 相变与重离子碰撞物理国际暨 2008 年 7 月 10 号 -12 号 Many thanks to: X. Cai, S. Blyth, F. Jin, H. Huang, G. Ma,
Fluctuations and Correlations of Conserved Charges in QCD at Finite Temperature with Effective Models Wei-jie Fu, ITP, CAS Collaborated with Prof. Yu-xin.
Phase Transitions of Strong Interaction System in Dyson-Schwinger Equation Approach Yu-xin Liu (刘玉鑫) Department of Physics, Peking University, China 第.
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E.
Chiral symmetry breaking in dense QCD
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
Nu Xu1/20 ”ATHIC2012“, Pusan, Korea, November , 2012 QCD in the Twenty-First Century (1)Higgs (-like) Particle – - Origin of Mass, QCD dof - Standard.
Exploring Real-time Functions on the Lattice with Inverse Propagator and Self-Energy Masakiyo Kitazawa (Osaka U.) 22/Sep./2011 Lunch BNL.
Heavy-quark potential from AdS/CFT 侯 德 富 华中师范大学粒子物理研究所 两岸粒子物理与宇宙学研讨会, 重庆, 2012 年 5 月.
Imaginary Chemical potential and Determination of QCD phase diagram
Pengfei Zhuang Physics Department, Tsinghua University, Beijing
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Third Moments of Conserved Charges in Phase Diagram of QCD Masakiyo Kitazawa (Osaka Univ.) M. Asakawa, S. Ejiri and MK, PRL103, (2009). Baryons’10,
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Istanbul 06 S.H.Lee 1 1.Introduction on sQGP and Bag model 2.Gluon condensates in sQGP and in vacuum 3.J/  suppression in RHIC 4.Pertubative QCD approach.
EoS of quark matter and structure of compact stars G. X. Peng University of Chinese Academy of Sciences Institute of High Energy Physics (UCAS/IHEP) Quarks.
Masakiyo Kitazawa (Osaka Univ.) HQ2008, Aug. 19, 2008 Hot Quarks in Lattice QCD.
QCD Phase Transitions & One of Their Astronomical Signals Yuxin Liu (刘玉鑫) Department of Physics, Peking University, China The CSQCDII, Peking University,
Quark matter meets cold atoms 474th International Wilhelm und Else Heraeus Seminar on Strong interactions: from methods to structures, Bad Honnef, Feb.
Lattice QCD at high temperature Péter Petreczky Physics Department and RIKEN-BNL EFT in Particle and Nuclear Physics, KITPC, Beijing August 19, 2009 Introduction.
Color neutrality effects in the phase diagram of the PNJL model A. Gabriela Grunfeld Tandar Lab. – Buenos Aires - Argentina In collaboration with D. Blaschke.
Fluctuation effect in relativistic BCS-BEC Crossover Jian Deng, Department of Modern Physics, USTC 2008, 7, QCD workshop, Hefei  Introduction  Boson-fermion.
Study of chemical potential effects on hadron mass by lattice QCD Pushkina Irina* Hadron Physics & Lattice QCD, Japan 2004 Three main points What do we.
M. Djordjevic 1 Theoretical predictions of jet suppression: a systematic comparison with RHIC and LHC data Magdalena Djordjevic Institute of Physics Belgrade,
Physics of Dense Matter in Heavy-ion Collisions at J-PARC Masakiyo Kitazawa J-PARC 研究会、 2015/8/5 、 J-PARC.
Masayasu Harada (Nagoya 理論センター研究会 「原子核・ハドロン物 理」 (August 11, 2009) based on M.H. and C.Sasaki, arXiv: M.H., C.Sasaki and W.Weise, Phys.
Phase Diagram and Thermal Properties of Strong Interaction Matter Yuxin Liu Dept. Phys., Peking Univ., China XQCD 2015, CCNU, Sept. 22, 2015 Outline Outline.
QCD 相転移の臨界点近傍における 非平衡ダイナミクスについて 北沢正清(京大), 国広悌二(京大基研 ), 根本幸雄 (RIKEN-BNL) 0 T  の1コメ ント Chiral symmetry breaking Color superconductivity (CSC) critical endpoint.
Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。
Heavy Quark Energy Loss due to Three-body Scattering in a Quark- Gluon Plasma Wei Liu Texas A&M University  Introduction  Heavy quark scattering in QGP.
Q UARK M ATTER WITH C HIRALITY I MBALANCE Marco Ruggieri ( マルコ ルジエーリ ) ) 京都大学基礎物理学研究所 京都市, 2011 年 4 月 21 日.
Quarks Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) Tokyo Univ., Sep. 27, 2007 Lattice Study of F. Karsch and M.K., arXiv:
Isospin dependent interactions in RMF & ρNN tensor coupling Introduction ρNN tensor coupling in RMF Some results Summary Wei-Zhou JIANG Collaborators:
Nuclear Matter Density Dependence of Nucleon Radius and Mass and Quark Condensates in the GCM of QCD Yu-xin Liu Department of Physics, Peking University.
Compact Stars With a Dyson- Schwinger Quark Model 1 陈 欢 Collaborate with 魏金标( CUG ), M. Baldo, F. Burgio and H.-J. Schulze ( INFN ). 2015“ 中子星与核天体物理 ”
PACIAE model analysis of particle ratio fluctuations in heavy-ion collisions Limin Fan ( 樊利敏 ) Central China Normal University (CCNU) 1 第十五届全国核物理大会.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Interplay between chiral and deconfinement phase transitions Hot and Cold Baryonic Matter, Budapest, Aug 15-19, 2010 Mei Huang IHEP, CAS TPCSF, CAS.
CSR-External-Target-Facility Experiment (CEE) Nu Xu (许怒) (1) College of Physical Science & Technology, Central China Normal University, China.
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored LHC Modelling QCD phase diagram Polyakov loop extended quark-meson.
Strongly Coupled Quark Matter and.
Towards understanding the Quark-Gluon Plasma
Locating the CEP via the DS Equation Approach
QCD Phase Transition in the Dyson-Schwinger Equation Approach
The Study of the Possible Phase Diagram of Deconfinement in FL Model
QCD Phase Transitions in Dyson-Schwinger Equation Approach
Toward QCD Phase Transitions via Continuum NP-QCD
Chiral phase transition in magnetic field
Yuxin Liu Department of Physics, Peking University, China
China-Japan Nuclear Physics 2006
Effect of equilibrium phase transition on multiphase transport in relativistic heavy ion collisions 喻 梅 凌 华中师范大学粒子物理研究所 2019/2/24 第十届全国粒子物理大会 桂林.
三胶子以及三夸克弹性散射 与早期热平衡化 Xiao-Ming Xu, Y. Sun, A.-Q. Chen, L. Zheng,
A possible approach to the CEP location
Presentation transcript:

早期宇宙强相互作用物质演化 的非微扰 QCD 研究 刘玉鑫 ( Yuxin Li u ) 北京大学物理学院理论物理研究所 Department of Physics, Peking University, China 第十四届全国核结构大会,湖州师院, 2012 年 4 月 12 日 Outline I. Introduction Ⅱ. The Approach Ⅱ. The Approach Ⅲ. The Evolution in Phase Transition View Ⅲ. The Evolution in Phase Transition View Ⅳ. Possible Observables Ⅳ. Possible Observables V. Summary V. Summary

I. Introduction  Content of the Long Rang Plan of Nuclear Science in USA

 早期宇宙物质的组分及演化涉及的基本问题 不束缚的夸克、 胶子及电子等 夸克、 胶子 囚禁 强子 核 合 成 原 子 核 复 合 时 期 原 子 星系形成星系形成 现 在 宇宙现 在 宇宙 “ 已知 ” 明亮物质 : 原子、分子 ( 强子 ) 物质 高度对称, m q = 0. m q > 0 , 呈 6 味 3 代. 如何禁闭 ? 为何禁闭 ? 明亮物质 ~ 5%. > 95% ? ? 暗物质? 暗能量? 手征对称性硬破缺, Higgs 机制, Higgs 粒子 ? 测量 LHC 信号 ? M u,d >= 100m u,d, 如何产生 ? 强作用非微扰效应 ! ? 全 “ 新 ” 形态物质: QPG ? sQGP ?

 Fundamental Process: Phase Transitions Schematic QCD Phase Diagram Items Influencing the Phase Transitions: Medium : Temperature T, Density (CheP.) Size Intrinsic : Current mass, Coupling Strength, Color-Flavor Stru. Phase Transitions involved : Deconfinement–confinement DCS – DCSB Flavor Sym. – FSB Chiral Symmetric Quark deconfined  SB SB, Quark confined sQGP Approaches: Expt. : RHIC 、 Ast-Obs. Theor. : Disc FT 、 ContFT, Compt. : Theor., Simulation

Thin Pancakes Lorentz  =100 Nuclei pass thru each other < 1 fm/c Huge Stretch Transverse Expansion High Temperature (?!) The Last Epoch: Final Freezeout-- Large Volume We measure the “final” state, we are most interested in the “intermediate” state, we need to understand the “initial” state… Experimental Aspects : ( 1 ) Relativistic Heavy Ion Collisions ( 2 ) Compact Star ObservationsObservations

 Theoretical Approaches : Two kinds - Continuum & Discrete (lattice)  Lattice QCD : Running coupling behavior , Vacuum Structure , Temperature effect , “Small chemical potential” ;     Continuum : (1) Phenomenological models (p)NJL 、 (p)QMC 、 QMF 、 (2) Field Theoretical Chiral perturbation, Renormalization Group, QCD sum rules, Instanton(liquid) model, DS equations, AdS/CFT, HD(T)LpQCD,    The approach should manifest simultaneously: (1) DCSB & its Restoration, (2) Confinement & Deconfinement.

Slavnov-Taylor Identity Dyson-Schwinger Equations axial gauges BBZ covariant gauges QCDQCD Ⅱ. The Dyson-Schwinger Equation Approach C. D. Roberts, et al, PPNP 33 (1994), 477; 45-S1, 1 (2000); EPJ-ST 140(2007), 53; R. Alkofer, et. al, Phys. Rep. 353, 281 (2001); C.S. Fischer, JPG 32(2006), R253; .

 Practical Algorithm at Present Stage  Quark equation at zero chemical potential where is the effective gluon propagator, can be conventionally decomposed as  Quark equation in medium  with

 Models of the Vertex (1) Bare Vertex (2) Ball-Chiu Vertex (3) Curtis-Pennington Vertex (Rainbow-Ladder Approx.) (4) BC+ACM Vertex (Chang, Liu, Roberts, PRL 106, (‘11) ) 满足 W-T 恒等式, 对纵向分量给出标准. 满足相乘性重整化 。

 Effective Gluon Propagators (3) Model (1) MN Model (2) (4) Realistic model Maris-Tandy Model (2) Point Interaction: (P) NJL Model Cuchieri, et al, PRD, 2008 A.C. Aguilar, et al., JHEP (3) Infrared Constant Model Qin, Chang, Liu, et al., PRC 84, (R), (‘11); 85, , (‘12). Taking in the coefficient of the above expres.

Dynamical chiral symmetry breaking (  SB) generates the mass of Fermion  SB 0 ~ - (240 MeV) 3 DSE approach meets the requirements! Dynamical Mass In DSE approach

parameters are taken from Phys. Rev. D 65, (1997), with fitted as  Effect of the Running Coupling Strength on the Chiral Phase Transition (W. Yuan, H. Chen, Y.X. Liu, Phys. Lett. B 637, 69 (2006)) Lattice QCD result PRD 72, (2005) (BC Vertex: L. Chang, Y.X. Liu, R.D. Roberts, et al., Phys. Rev. C 79, (2009)) Bare vertex CS phase CSB phase

 Part of the QCD Phase Diagram in terms of the Current Mass and Coupling Strength  The one with multi-node solutions is more complicated and more interesting. One Solution (ECSB) Three Solutions (ECSB + DCSB)

Slavnov-Taylor Identity Dyson-Schwinger Equations axial gauges BBZ covariant gauges QCDQCD  A comment on the DSE approach in QCD C. D. Roberts, et al, PPNP 33 (1994), 477; 45-S1, 1 (2000); EPJ-ST 140(2007), 53; R. Alkofer, et. al, Phys. Rep. 353, 281 (2001); C.S. Fischer, JPG 32(2006), R253; .

I II. The Evolution in Phase Transition View  Special Topic (1) : I II. The Evolution in Phase Transition View  Special Topic (1) : Critical EndPoint (CEP) The Position of CEP is a highly debated problem! What’s the criterion of PT when not knowing the ETP? Why different models give distinct results ?  (p)NJL model & others give quite large  E /T E (> 3.0) Sasaki, et al., PRD 77, (2008); Costa, et al., PRD 77, (2008); Fu & Liu, PRD 77, (2008); Ciminale, et al., PRD 77, (2008); Fukushima, PRD 77, (2008); Kashiwa, et al., PLB 662, 26 (2008); Abuki, et al., PRD 78, (2008); Schaefer, et al., PRD 79, (2009); Costa, et al., PRD 81, (2010);  Hatta, et al., PRD 67, (2003); Cavacs, et al., PRD 77, (2008);   Lattice QCD gives smaller  E /T E ( 0.4 ~ 1.1) Fodor, et al., JHEP 4, 050 (2004); Gavai, et al., PRD 71, (2005); Gupta, arXiv:~ [nucl-ex]; Li, et al., NPA 830, 633c (2009); Gupta & Xu, et al., Science 332, 1525 (2011);   RHIC Exp. Estimate hints quite small  E /T E (  1) R.A. Lacey, et al., nucl-ex/ ;   Simple DSE Calculations with Different Effective Gluon Propagators Generate Different Results (0.0, 1.3) Blaschke, et al, PLB 425, 232 (1998); He, et al., PRD 79, (2009);  

 Special topic (2): Coexistence region (Quarkyonic ? ) claim that there exists a quarkyonic phase. and General (large-N c ) Analysis McLerran, et al., NPA 796, 83 (‘07); NPA 808, 117 (‘08); NPA 824, 86 (‘09),   Lattice QCD Calculation de Forcrand, et al., Nucl. Phys. B Proc. Suppl. 153, 62 (2006) ;   Can sophisticated continuous field approach of QCD give the coexistence (quarkyonic) phase ?  What can we know more for the coexistence phase?  Inconsistent with Coleman-Witten Theorem !! quarkyonic

 Chiral susceptibility can be the criterion! Phase diagram is given, CEP is fixed. S.X. Qin, L. Chang, H. Chen, Y.X. Liu, et al, PRL 106, (‘11) S.X. Qin, L. Chang, H. Chen, Y.X. Liu, et al, PRL 106, (‘11) Phase diagram in bare vertexPhase diagram in BC vertex

Small σ  long range in coordinate space  Dif. of CEP come from dif. Confin. Length MN model  infinite range in r-space NJL model  “zero” range in r-space Longer range Int.  Smaller  E /T E S.X. Qin, L. Chang, H. Chen, Y.X. Liu, et al, PRL 106, (‘11) S.X. Qin, L. Chang, H. Chen, Y.X. Liu, et al, PRL 106, (‘11)

 Special Topic (3): Quark Matter at T above but near T c HTL Cal. (Pisarski, PRL 63, 1129(‘89); Blaizot, PTP S168, 330(’07)), Lattice QCD ( Karsch, et al., NPA 830, 223 (‘09); PRD 80, (’09) ) NJL (Wambach, et al., PRD 81, (2010)) & Simple DSE Cal. (Fischer et al., EPJC 70, 1037 (2010) ) show: there exists thermal & Plasmino excitations in hot QM. Other Lattice QCD Simulations ( Hamada, et al., Phys. Rev. D 81, (2010) ) claims: No No qualitative difference between the quark propagators in the deconfined and confined phases near the T c. RHIC experiments ( Gyulassy, et al., NPA 750, 30 (2005); Shuryak, PPNP 62, 48 (2009); Song, et al., JPG 36, (2009); … … ) indicate: the matter is in sQGP state.  What’s the nature of the matter in npQCD?

Solving quark’s DSE  Quark’s Propagator  Property of the matter above but near the T c Maximum Entropy Method ( Asakawa, et al., PPNP 46,459 (2001) ; Nickel, Ann. Phys. 322, 1949 (2007) )  Spectral Function In M-Space, only Yuan, Liu, etc, PRD 81, (2010). Usually in E-Space, Analytical continuation is required. Qin, Chang, Liu, et al., PRD 84, (2011)

T = 3.0T c Disperse Relation and Momentum Dependence of the Residues of the Quasi-particles’ poles T = 1.1T c S.X. Qin, L. Chang, Y.X. Liu, C.D. Roberts, PRD 84, (‘11) S.X. Qin, L. Chang, Y.X. Liu, C.D. Roberts, PRD 84, (‘11) Normal T. Mode Plasmino M. Zero Mode  The zero mode exists at low momentum (<7.0T c ), and is long-range correlation ( ~   1 > FP ).  The quark at the T where  S is restored involves still rich phases. And the matter is sQGP.

 Effect of the Chemical Potential on the Chiral Phase Transition Diquark channel: ( W. Yuan, H. Chen, Y.X. Liu, Phys. Lett. B 637, 69 (2006) ) Chiral channel: ( L. Chang, H. Chen, B. Wang, W. Yuan,Y.X. Liu, Phys. Lett. B 644, 315 ( L. Chang, H. Chen, B. Wang, W. Yuan, and Y.X. Liu, Phys. Lett. B 644, 315 (2007) ) Chiral Susceptibility of Wigner-Vacuum in DSE Some Refs. of DSE study on CSC 1. D. Nickel, et al., PRD 73, (2006); 2. D. Nickel, et al., PRD 74, (2006); 3. F. Marhauser, et al., PRD 75, (2007); D. Nickel, et al., PRD 77, (2008); …………

“QCD” Phase Transitions may Happen Ⅳ. Possible Observables General idea , Phenom. Calc.,Calc. Sophist.Sophist. Calc.,Calc. quark may get deconfined (QCD PT) at high T and/or  Signals for QCD Phase Transitions: In Lab. Expt. Jet Q., v 2, Viscosity, , CC Fluct. & Correl., Hadron Prop.,··· In Astron. Observ.. M-R Rel., Rad. Sp., Inst. R. Oscil., Freq. G. Oscil., ··· QCD Phase Transitions s

 Density & Temperature Dependence of some Properties of Nucleon in DSE Soliton Model (Y. X. Liu, et al., NP A 695, 353 (2001); NPA 725, 127 (2003); NPA 750, 324 (2005) ) ( Y. Mo, S.X. Qin, and Y.X. Liu, Phys. Rev. C 82, (2010) )

( Wei-jie Fu, and Yu-xin Liu, Phys. Rev. D 79, (2009) )   T-dependence of some properties of  &  -mesons and  -  S-L. in the model with contact interaction

 Fluctuation & Correlation of Conserved Charges Recent Lattice QCD results agree with ours excellently! W.J. Fu, Y.X. Liu, & Y.L. Wu, PRD 79, (2010) 。 HotQCD Collaboration,

 Gravitational Mode Pulsation Frequency can be an Excellent Astronomical Signal W.J. Fu, H.Q. Wei, and Y.X. Liu, arXiv: ,1084 Phys. Rev. Lett. 101 , (2008) Neutron Star: RMF, Quark Star: Bag Model Frequency of g-mode oscillation

Taking into account the  SB effect

Ott et al. have found that these g-mode pulsation of supernova cores are very efficient as sources of g-waves (PRL 96, (2006) ) DS Cheng, R. Ouyed, T. Fischer, ····· g-mode pulsation frequency can be a signal identifying the QCD phase transitions in high density matter ( compact star matter).

 Only the star matter including deconfined quarks can give the one with M  2.0M sun  Hadron-star’s mass can not be larger than 1.8M sun G.Y. Shao, Y. X. Liu, Phys. Rev. D 82, (2010).  Quark-star’s mass can be larger than 2.0M sun ( Nature 467, 1081 (2010) reported ) H.S. Zong, et al., PRD 82, (2010); MPL 25, 47 (2010); PRD 83, (2011); PRD 85, (2012); etc;

 Dynamical Mass is Generated by DCSB;  Phase Diagram is given;  CEP is fixed & Coexisting Phase is discussed;  Some observables are proposed.  Observables ?!  Mechanism ?! Process ?!    Thanks !!  Far from Well Established ! V. Summary & Remarks  Discussed some aspects of the Early Universe Matter Evolution in view of the QCD phase transitions in the DS equation approach of QCD