Computer Science 385.3 Term 1, 2006 Tutorial 5 The Final Exam.

Slides:



Advertisements
Similar presentations
3D Graphics Rendering and Terrain Modeling
Advertisements

Virtual Realism LIGHTING AND SHADING. Lighting & Shading Approximate physical reality Ray tracing: Follow light rays through a scene Accurate, but expensive.
1. What is Lighting? 2 Example 1. Find the cubic polynomial or that passes through the four points and satisfies 1.As a photon Metal Insulator.
Based on slides created by Edward Angel
Illumination Model & Surface-rendering Method 박 경 와.
1 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Shading I.
Computer Graphics - Class 10
IMGD 1001: Illumination by Mark Claypool
Computer Graphics (Fall 2005) COMS 4160, Lecture 16: Illumination and Shading 1
(conventional Cartesian reference system)
1 CSCE 641: Computer Graphics Lighting Jinxiang Chai.
7M836 Animation & Rendering
Objectives Learn to shade objects so their images appear three- dimensional Learn to shade objects so their images appear three- dimensional Introduce.
IAT 3551 Computer Graphics Overview Color Displays Drawing Pipeline.
Graphics Systems I-Chen Lin’s CG slides, Doug James’s CG slides Angel, Interactive Computer Graphics, Chap 1 Introduction to Graphics Pipeline.
6.1 Vis_04 Data Visualization Lecture 6 - A Rough Guide to Rendering.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Shading I Ed Angel Professor of Computer Science, Electrical and Computer Engineering,
Illumination Behaviour of light. Shading Overview Classical real-time shading: – vertices projected to screen – lighting calculation done at each vertex.
LIGHTING Part One - Theory based on Chapter 6. Lights in the real world Lights bounce off surfaces and reflect colors, scattering light in many directions.
CS 480/680 Computer Graphics Shading I Dr. Frederick C Harris, Jr.
SET09115 Intro Graphics Programming
Computer Graphics: Programming, Problem Solving, and Visual Communication Steve Cunningham California State University Stanislaus and Grinnell College.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
COMP 261 Lecture 14 3D Graphics 2 of 2. Doing better than 3x3? Translation, scaling, rotation are different. Awkward to combine them. Use homogeneous.
Shading (introduction to rendering). Rendering  We know how to specify the geometry but how is the color calculated.
COMP SCI 352 Computer Graphics and Animation. Computer Graphics2 My name is … My name is … How to find me How to find me Course Policies Course Policies.
Technology and Historical Overview. Introduction to 3d Computer Graphics  3D computer graphics is the science, study, and method of projecting a mathematical.
19/17/ :25 UML Graphics: Conceptual Model Real Object Human Eye Display Device Graphics System Synthetic Model Synthetic Camera Real Light Synthetic.
Computer Graphics An Introduction. What’s this course all about? 06/10/2015 Lecture 1 2 We will cover… Graphics programming and algorithms Graphics data.
Rendering Overview CSE 3541 Matt Boggus. Rendering Algorithmically generating a 2D image from 3D models Raster graphics.
Taku KomuraComputer Graphics Local Illumination and Shading Computer Graphics – Lecture 10 Taku Komura Institute for Perception, Action.
University of Texas at Austin CS 378 – Game Technology Don Fussell CS 378: Computer Game Technology Basic Rendering Pipeline and Shading Spring 2012.
Programmable Pipelines Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts Director, Arts Technology Center University.
Computer Graphics: Programming, Problem Solving, and Visual Communication Steve Cunningham California State University Stanislaus and Grinnell College.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
Shading in OpenGL Ed Angel Professor Emeritus of Computer Science University of New Mexico 1 E. Angel and D. Shreiner: Interactive Computer Graphics 6E.
Computing & Information Sciences Kansas State University Lecture 12 of 42CIS 636/736: (Introduction to) Computer Graphics CIS 636/736 Computer Graphics.
Local Illumination and Shading
Where We Stand So far we know how to: –Transform between spaces –Rasterize –Decide what’s in front Next –Deciding its intensity and color.
1 CSCE 441: Computer Graphics Lighting Jinxiang Chai.
CS 445 / 645: Introductory Computer Graphics Review.
OpenGL Shading. 2 Objectives Learn to shade objects so their images appear three-dimensional Introduce the types of light-material interactions Build.
1 CSCE 441: Computer Graphics Lighting Jinxiang Chai.
David Luebke3/16/2016 CS 551 / 645: Introductory Computer Graphics David Luebke
Graphics Review Geometry, Color & Shading Brad Tennis Leslie Wu
1 CSCE 441: Computer Graphics Lighting Jinxiang Chai.
Computer Graphics Ken-Yi Lee National Taiwan University (the slides are adapted from Bing-Yi Chen and Yung-Yu Chuang)
1 of 32 Computer Graphics Color. 2 of 32 Basics Of Color elements of color:
Computer Graphics (Fall 2006) COMS 4160, Lecture 16: Illumination and Shading 1
Illumination and Shading. Illumination (Lighting) Model the interaction of light with surface points to determine their final color and brightness OpenGL.
Illumination and Shading Prof. Lizhuang Ma Shanghai Jiao Tong University.
Chapter 5. Lighting Computer Graphics (spring, 2009) School of Computer Science University of Seoul.
Computer Graphics (fall,2010) School of Computer Science University of Seoul Minho Kim.
Computer Graphics Overview
© University of Wisconsin, CS559 Spring 2004
Shading To determine the correct shades of color on the surface of graphical objects.
Programmable Pipelines
A complete pipeline for 3D graphics
3D Graphics Rendering PPT By Ricardo Veguilla.
Unit-7 Lighting and Shading
CSE 470 Introduction to Computer Graphics Arizona State University
Fundamentals of Computer Graphics Part 6 Shading
Illumination and Shading
Computer Graphics Material Colours and Lighting
Computer Graphics (Fall 2003)
Illumination Model 고려대학교 컴퓨터 그래픽스 연구실.
Illumination Model 고려대학교 컴퓨터 그래픽스 연구실.
CS 480/680 Computer Graphics Shading.
Computer Graphics Shading in OpenGL
Shading in OpenGL Ed Angel Professor Emeritus of Computer Science
Presentation transcript:

Computer Science Term 1, 2006 Tutorial 5 The Final Exam

Special Notes: -This is the last week of tutorials. Any further questions can be directed by . -The Final Exam will be held at 2:00 on December 13th. -Course Evaluations are now available!

The Final Exam Tutorial Outline: (Disclaimer: This is list is by no means exhaustive! Do not assume that only the topics mentioned here will be covered on the exam!) -Final Exam Format -Matrices (Geometric Transformations/Camera Projections) -Lighting (3-Term Lighting Model/Alternate Lighting Models) -Color (Color Models/Shading) -Advanced Geometry (Splines/BSP Trees) -Physics -Choice of Halftoning or Renderman.

The Final Exam Final Exam Format: The general goal of the exam is to test your understanding of the underlying concepts in graphics, not just their implementation in OpenGL. In other words, there may be some OpenGL-specific questions, but the focus of the exam will not be on remembering OpenGL callbacks. -Approximate Duration: 2 hours. Questions will be mostly short answer, with a few mathematical exercises - mostly involving matrices.

The Final Exam Matrices – Geometric Transformations: Recall the definition of the ModelView matrix. It is used to determine the location of objects within a scene. Transformation matrices can be applied to ModelView matrix to move objects around the viewing position. You should know the generic matrices for the following operations: Translation;Rotation;Scaling;

The Final Exam Matrices – Geometric Transformations: Translation;Rotation;Scaling; cosA -sinA 0 0 sinA cosA Sx Sy Sz x y z These operations can be applied repeatedly to the Model View matrix. -Order does matter! Each operation is commutative in and of itself, but not with the other operations. -Recall that OpenGL applies them in reverse order!

The Final Exam Matrices – Camera Projections: In OpenGL, the camera position never changes; instead, the scene is rotated or translated around the camera. The viewing volume can be defined in several ways: Orthogonal Projection: Objects of the same size will appear the same size, regardless of distance from the viewing position – useful for maps. Perspective Projection: Objects will be scaled according to their distance from the camera. GlFrustum creates a viewing pyramid that will perform this scaling.

The Final Exam Lighting – The Three Term Lighting Model: You should have a good understanding of the 3-Term Lighting Model, and be able to describe what each term means, and how they can be calculated. Term 1: ? Term 2: ? Term 3: ?

The Final Exam Lighting – The Three Term Lighting Model: Term 1: Ambient – Defined as the result of direct light bouncing between objects. I = Ia * Ka where Ia is the ambient light in the scene and Ka is the surface properties. Term 2: Diffuse – Direct light eminating from a light source which strikes the objects in the scene and is reflected equally in all directions. I = Ip * kd * cos Theta where Ip is the intensity of the diffuse light source, kd is the reflective property of the surface, and Theta is the angle between the surface normal and the light. Term 3: Specular – The highlights that can appear on metallic, shiny objects. I = f_att * Ip * ks ( cos^n Alpha ) where f_att represents attenuation, Ip is the intensity, Ks is the specular coefficient of the material and Alpha is the difference between the vieing angle and the angle of reflection.

The Final Exam Lighting – Alternate Lighting Models: Radiosity – Global Illumination Method that aims to better model the interaction of light as it bounces through a scene. This permits for the modeling of soft shadows, which is difficult with direct illumination methods. However, direct reflections (specular highlights) are difficult to achieve. Bi is the radiosity of patch i, Ei is the energy emitted by i, Ri is the reflectivity of i. The sum measures the input from all other patches.

The Final Exam Colors – Color Models: Many different color models exist, and they have different advantages with regard to the human visual system. Adelson’s shadow

The Final Exam Color – Color Models: Adelson’s shadow

The Final Exam Color – Color Models: RGB (Red, Green, Blue) is the classic color model that is used for computer graphics. It is an additive model – we add each of the three primaries to a black base in order to obtain all the colors. CMYK (Cyan, Magenta, Yellow and Key/Black) is used by output devices such as printers. It's a subtractive model, where CMY is subtracted from a white base.

The Final Exam Color – Shading: Several shading models have been discussed in this course. You are expected to know how they defer from one another. Flat Shading: Each polygon is given a single color. Gouraud Shading: Lighting calculations are performed only at the vertices of the polygons, and then the interior pixels are colored by interpolation. This is implemented in OpenGL. Phong Shading: Lighting calculations are performed at each and every pixel to determine its color.

The Final Exam Advanced Geometry – Hermite Curves: Many types of splines and advanced curves were discussed in class. Though you should understand the concepts behind all of them, you won't need to know the mathematics behind any of them except hermite curves. Hermite Curves: Controlled by two endpoints and two tangents at the endpoints. x(t) = (2t^3 - 3t^2 + 1) * xp1 + (-2t^3 + 3t^2) * xp4 +(t^3 - 2t^2 + t) * xr1 + (t^3 - t^2) * xr4. y(t) = (2t^3 - 3t^2 + 1) * yp1 + (-2t^3 + 3t^2) * yp4 +(t^3 - 2t^2 + t) * yr1 + (t^3 - t^2) * yr4. z(t) = (2t^3 - 3t^2 + 1) * zp1 + (-2t^3 + 3t^2) * zp4 +(t^3 - 2t^2 + t) * zr1 + (t^3 - t^2) * zr4.

The Final Exam Advanced Geometry – BSP Trees: Binary Space Partitioning Trees are used to partition space. This is useful for modeling and for culling hidden surfaces. In essence, this involves inserting planes into the world and determining which objects are in front or behind them. This is represented in the form of a tree.

The Final Exam Advanced Geometry – BSP Trees: | | | | | | | | | | d | | | | | | | a | -> | b X c | -> +--Y--+ f | ->... | | | | | | | | | | e | | | | | | The resulting BSP tree looks like this at each step: a X X... -/ \+ -/ \+ / \ / \ b c Y f -/ \+ / \ e d

The Final Exam Physics: Animation was not a big part of this course, but you have done some rudimentary physics in your assignments. You should have an understanding of the force interactions involved with collisions in the pool table assignment. You should also have some understanding of particle motion and how to do very simple integration and dynamics.

The Final Exam Halftoning or Renderman: As in Assignment 4, you will have the choice of doing a question on Halftoning or one on shaders in Renderman. For more details on these, see the slides for Tutorial 4.

The Final Exam Good luck!