ICOM 5016 – Introduction to Database Systems Lecture 5b Dr. Manuel Rodriguez Department of Electrical and Computer Engineering University of Puerto Rico,

Slides:



Advertisements
Similar presentations
Ver 1,12/09/2012Kode :CCs 111,sistem basisdataFASILKOM Chapter 2: Relational Model Database System Concepts, 5th Ed. ©Silberschatz, Korth and Sudarshan.
Advertisements

©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Extended.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Tuple Relational.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Tuple Relational.
Chapter 3: Relational Model
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Relational.
SPRING 2004CENG 3521 E-R Diagram for the Banking Enterprise.
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Relational.
Midterm 2 Revision Prof. Sin-Min Lee Department of Computer Science San Jose State University.
Slides adapted from A. Silberschatz et al. Database System Concepts, 5th Ed. Relational Model Database Management Systems I Alex Coman, Winter 2006.
Relational Model. 2 Structure of Relational Databases Fundamental Relational-Algebra-Operations Additional Relational-Algebra-Operations Extended Relational-Algebra-Operations.
ICOM 5016 – Introduction to Database Systems Lecture 4 Dr. Manuel Rodriguez Department of Electrical and Computer Engineering University of Puerto Rico,
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Tuple Relational.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Tuple Relational.
PMIT-6102 Advanced Database Systems By- Jesmin Akhter Assistant Professor, IIT, Jahangirnagar University.
PMIT-6102 Advanced Database Systems By- Jesmin Akhter Assistant Professor, IIT, Jahangirnagar University.
Chapter 3: Relational Model I Structure of Relational Databases Structure of Relational Databases Convert a ER Design to a Relational Database Convert.
1 Session 3 Welcome: To session 3- the first learning sequence “ Introduction to Relational Model“ Recap : In the previous learning sequences, we discussed.
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Intro to Relational.
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Relational.
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Intro to Relational.
Chapter 2 Adapted from Silberschatz, et al. CHECK SLIDE 16.
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Relational.
CIS552Relational Model1 Structure of Relational Database Relational Algebra Extended Relational-Algebra-Operations Modification of the Database.
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com ICOM 5016 – Introduction.
3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Tuple Relational Calculus Domain Relational.
Midterm 2 Revision Prof. Sin-Min Lee Department of Mathematics and Computer Science San Jose State University.
Relational Model By Dr.S.Sridhar, Ph.D.(JNUD), RACI(Paris, NICE), RMR(USA), RZFM(Germany) DIRECTOR ARUNAI ENGINEERING COLLEGE TIRUVANNAMALAI.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Extended.
Chapter 2: Relational Model. 2.2 Chapter 2: Relational Model Structure of Relational Databases Fundamental Relational-Algebra-Operations Additional Relational-Algebra-Operations.
CSc340 1b1 The Relational Model Chapter 2 Database Schema Keys Schema Diagrams Relational Query Languages Relational Operations.
ICOM 5016 – Introduction to Database Systems Lecture 9 Dr. Manuel Rodriguez Department of Electrical and Computer Engineering University of Puerto Rico,
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Intro to Relational.
Chapter 2: Relational Model. 2.2Unite International CollegeDatabase Management Systems Chapter 2: Relational Model Structure of Relational Databases Fundamental.
Chapter 2: Relational Model II Relational Algebra basics Relational Algebra basics.
Computing & Information Sciences Kansas State University Friday, 26 Jan 2008CIS 560: Database System Concepts Lecture 2 of 42 Friday, 29 August 2008 William.
Temple University – CIS Dept. CIS331– Principles of Database Systems V. Megalooikonomou Relational Model I (based on notes by Silberchatz,Korth, and Sudarshan.
2.1 Chapter 2: Relational Model. 2.2 Chapter 2: Relational Model Structure of Relational Databases Fundamental Relational-Algebra-Operations Additional.
Chapter 2 Introduction to Relational Model. Example of a Relation attributes (or columns) tuples (or rows) Introduction to Relational Model 2.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Extended.
Chapter 2: Intro to Relational Model. 2.2 Example of a Relation attributes (or columns) tuples (or rows)
International Computer Institute, Izmir, Turkey E-R Model Asst.Prof.Dr.İlker Kocabaş UBİ502 at
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Introduction.
Midterm 2 Revision Prof. Sin-Min Lee Department of Computer Science San Jose State University.
Database System Concepts, 5 th Ed. Bin Mu at Tongji University Chapter 2: Relational Model.
ICOM 5016 – Introduction to Database Systems Lecture 6 Dr. Manuel Rodriguez Department of Electrical and Computer Engineering University of Puerto Rico,
Chapter 3: Relational Model  Structure of Relational Databases  Normal forms (chap. 7)  Reduction of an E-R Schema to Relational (Sect. 2.9)  Relational.
International Computer Institute, Izmir, Turkey Relational Model Asst.Prof.Dr.İlker Kocabaş UBİ502 at
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Intro to Relational.
PMIT-6102 Advanced Database Systems By- Jesmin Akhter Assistant Professor, IIT, Jahangirnagar University.
Advantages of E.R. Model Exceptional conceptual simplicity Visual representation Effective communication tool Integrated with the relational data model.
Advantages of E.R. Model Exceptional conceptual simplicity Visual representation Effective communication tool Integrated with the relational data model.
Query Languages Language in which user requests information from the database. Categories of languages Procedural Non-procedural, or declarative “Pure”
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Intro to Relational.
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan Chapter 2: Relational Model.
Why it is required to use ERD? Ease of tasks distribution between programmers Evaluation of data consistencies اتساق before building database Efficient.
Module 2: Intro to Relational Model
Introduction to Relational Model
Relational Model By Dr.S.Sridhar, Ph.D.(JNUD), RACI(Paris, NICE), RMR(USA), RZFM(Germany)
Chapter 2: Intro to Relational Model
Chapter 3: Intro to Relational Model
Chapter 2: Intro to Relational Model
Chapter 2: Intro to Relational Model
Relational Model.
Chapter 2: Intro to Relational Model
Chapter 2: Intro to Relational Model
Example of a Relation attributes (or columns) tuples (or rows)
Chapter 2: Intro to Relational Model
Chapter 2: Intro to Relational Model
Relational Model B.Ramamurthy 5/28/2019 B.Ramamurthy.
Presentation transcript:

ICOM 5016 – Introduction to Database Systems Lecture 5b Dr. Manuel Rodriguez Department of Electrical and Computer Engineering University of Puerto Rico, Mayagüez

©Silberschatz, Korth and Sudarshan3.2Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Tuple Relational Calculus Domain Relational Calculus Extended Relational-Algebra-Operations Modification of the Database Views

©Silberschatz, Korth and Sudarshan3.3Database System Concepts Example of a Relation

©Silberschatz, Korth and Sudarshan3.4Database System Concepts Basic Structure Formally, given sets D 1, D 2, …. D n a relation r is a subset of D 1 x D 2 x … x D n Thus a relation is a set of n-tuples (a 1, a 2, …, a n ) where each a i  D i Example: if customer-name = {Jones, Smith, Curry, Lindsay} customer-street = {Main, North, Park} customer-city = {Harrison, Rye, Pittsfield} Then r  customer-name x customer-street x customer-city r = { (Jones, Main, Harrison), (Smith, North, Rye), (Curry, North, Rye), (Lindsay, Park, Pittsfield)} is a relation over customer-name x customer-street x customer-city

©Silberschatz, Korth and Sudarshan3.5Database System Concepts Attribute Types Each attribute of a relation has a name The set of allowed values for each attribute is called the domain of the attribute Attribute values are (normally) required to be atomic, that is, indivisible  E.g. multivalued attribute values are not atomic  E.g. composite attribute values are not atomic The special value null is a member of every domain The null value causes complications in the definition of many operations  we shall ignore the effect of null values in our main presentation and consider their effect later

©Silberschatz, Korth and Sudarshan3.6Database System Concepts Relation Schema A 1, A 2, …, A n are attributes R = (A 1, A 2, …, A n ) is a relation schema E.g. Customer-schema = (customer-name, customer-street, customer-city) r(R) is a relation on the relation schema R E.g.customer (Customer-schema)

©Silberschatz, Korth and Sudarshan3.7Database System Concepts Relation Instance The current values (relation instance) of a relation are specified by a table An element t of r is a tuple, represented by a row in a table Jones Smith Curry Lindsay customer-name Main North Park customer-street Harrison Rye Pittsfield customer-city customer attributes (or columns) tuples (or rows)

©Silberschatz, Korth and Sudarshan3.8Database System Concepts Relations are Unordered Order of tuples is irrelevant (tuples may be stored in an arbitrary order) E.g. account relation with unordered tuples

©Silberschatz, Korth and Sudarshan3.9Database System Concepts Database A database consists of multiple relations Information about an enterprise is broken up into parts, with each relation storing one part of the information E.g.: account : stores information about accounts depositor : stores information about which customer owns which account customer : stores information about customers Storing all information as a single relation such as bank(account-number, balance, customer-name,..) results in  repetition of information (e.g. two customers own an account)  the need for null values (e.g. represent a customer without an account) Normalization theory (Chapter 7) deals with how to design relational schemas

©Silberschatz, Korth and Sudarshan3.10Database System Concepts The customer Relation

©Silberschatz, Korth and Sudarshan3.11Database System Concepts The depositor Relation

©Silberschatz, Korth and Sudarshan3.12Database System Concepts E-R Diagram for the Banking Enterprise

©Silberschatz, Korth and Sudarshan3.13Database System Concepts Keys Let K  R K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)  by “possible r” we mean a relation r that could exist in the enterprise we are modeling.  Example: {customer-name, customer-street} and {customer-name} are both superkeys of Customer, if no two customers can possibly have the same name. K is a candidate key if K is minimal Example: {customer-name} is a candidate key for Customer, since it is a superkey (assuming no two customers can possibly have the same name), and no subset of it is a superkey.

©Silberschatz, Korth and Sudarshan3.14Database System Concepts Determining Keys from E-R Sets Strong entity set. The primary key of the entity set becomes the primary key of the relation. Weak entity set. The primary key of the relation consists of the union of the primary key of the strong entity set and the discriminator of the weak entity set. Relationship set. The union of the primary keys of the related entity sets becomes a super key of the relation.  For binary many-to-one relationship sets, the primary key of the “many” entity set becomes the relation’s primary key.  For one-to-one relationship sets, the relation’s primary key can be that of either entity set.  For many-to-many relationship sets, the union of the primary keys becomes the relation’s primary key

©Silberschatz, Korth and Sudarshan3.15Database System Concepts Schema Diagram for the Banking Enterprise

©Silberschatz, Korth and Sudarshan3.16Database System Concepts Query Languages Language in which user requests information from the database. Categories of languages  procedural  non-procedural “Pure” languages:  Relational Algebra  Tuple Relational Calculus  Domain Relational Calculus Pure languages form underlying basis of query languages that people use.

©Silberschatz, Korth and Sudarshan3.17Database System Concepts Relational Algebra Procedural language Six basic operators  select  project  union  set difference  Cartesian product  rename The operators take two or more relations as inputs and give a new relation as a result.

©Silberschatz, Korth and Sudarshan3.18Database System Concepts Select Operation – Example Relation r ABCD    A=B ^ D > 5 (r) ABCD  

©Silberschatz, Korth and Sudarshan3.19Database System Concepts Select Operation Notation:  p (r) p is called the selection predicate Defined as:  p ( r) = {t | t  r and p(t)} Where p is a formula in propositional calculus consisting of terms connected by :  (and),  (or),  (not) Each term is one of: op or where op is one of: =, , >, . <.  Example of selection:  branch-name=“Perryridge ” (account)