H. Koch, SFAIR, Lund, Sept. 12-13, 2005 Hadron Physics with Antiprotons  Overview  Physics with PANDA (see J. Ritman, U. Wiedner) – Hadron.

Slides:



Advertisements
Similar presentations
Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Advertisements

Klaus Peters - GSI Future - Physics with Antiprotons
Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Phi-Psi, Feb.-Mar., 2006, S.Uehara1 Experimental studies of charmonia in two-photon collisions at Belle S.Uehara (KEK) for the Belle Collaboration e +
1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _.
Kernfysica: quarks, nucleonen en kernen
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Charmonium Spectroscopy: Missing or Unconfirmed States Diego Bettoni INFN – Sezione di Ferrara International Workshop on Physics with Antiprotons at GSI.
J/  Physics at BESIII/BEPCII Xiaoyan SHEN Institute of High Energy Physics, CAS BESIII/CLEO-c Workshop, Jan , 2004, Beijing.
New Opportunities for Hadron Physics with the Planned PANDA Detector
Antiproton Requirements for Klaus Peters KPIII/HPI, GSI Darmstadt IKF, JWGU Frankfurt p-Workshop, GSI, Darmstadt Dec 3, 2007.
Charmonium Spectroscopy at  PANDA Diego Bettoni INFN, Ferrara, Italy for the  PANDA Collaboration Mainz, Germany, 19 November 2009.
Sep. 29, 2006 Henry Band - U. of Wisconsin 1 Hadronic Charm Decays From B Factories Henry Band University of Wisconsin 11th International Conference on.
Polish-German Meeting, Warszawa, Search for exotic hadrons with the PANDA detector Jan Kisiel Institute of Physics, University of Silesia Katowice,
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
New Particles at BELLE Beauty 2005 Assisi Spectroscopy and new Particles F. Mandl There is an impressive list of new particles in the charm sector discovered.
TIME-LIKE BARYON FORM FACTORS: EXPERIMENTAL SITUATION AND POSSIBILITIES FOR PEP-N Roberto Calabrese Dipartimento di Fisica and I.N.F.N. Ferrara, Italy.
Oct. 5 th th International Workshop on Heavy Quarkonium 2011 Jim Ritman Mitglied der Helmholtz-Gemeinschaft Status of PANDA.
Physics with open charm Andrey Sokolov IKP I FZ Jülich.
Antiproton Physics at GSI The GSI Future project The antiproton facility The physics program - Charmonium spectroscopy - Charmed hybrids and glueballs.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
H. Koch, SMI/ÖAW Symposium Vienna, September 1, 2006 Physics Goals of PANDA  Introduction – The PANDA Project – PANDA and HESR – Status of the PANDA Project.
Working Group 5 Summary David Christian Fermilab.
Spectroscopy: Experimental Status and Prospects Curtis A. Meyer Carnegie Mellon University.
Meson spectroscopy with photo- and electro-production Curtis A. Meyer Carnegie Mellon University.
D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h.
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
Klaus Peters Ruhr-Universität Bochum Yokohama, March 3, 2003 Charmed
Antiproton Physics Experiments Keith Gollwitzer -- Fermilab Antiproton Sources Accumulator Antiproton Physics Experiments –Precision measurements Method.
H. Koch, QCD-N 06, June 2006 PANDA at the GSI  Introduction  The FAIR-Project and the PANDA-Detector  Physics Program of the PANDA-Collaboration – Hadron.
Non-standard mesons in BES III?
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
Physical Program of Tau-charm Factory V.P.Druzhinin, Budker INP, Novosibirsk.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
H. Koch, L.M.U. and T.U. Munich, Dec. 15, 2005 News with Charm  Introduction  Open Charm States  States with hidden Charm  Future: PANDA-Detector at.
g/ JLab Users Group Meeting Curtis A. Meyer Poster.
Electromagnetic form factors of the proton in the time-like region with the PANDA detector GDR/LQCD Autrans, 6-7 Juin 2005 Saro Ong IPN Orsay and UPJV.
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
New hadrons BaBar Maurizio Lo Vetere University of Genova & INFN Representing the Collaboration Particles and Nuclei International Conference.
Günther Rosner EINN05, Milos, 24/9/05 1 Prospects for Hadron Physics in Europe Experimental frontiers:  High precision  High luminosity  Polarisation.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
H. Koch; Seminar Graduate College Bochum/Dortmund; Hadron Spectroscopy with Antiprotons  Historical Overview  Spetroscopy with antiproton beams.
The Physics of high baryon densities Probing the QCD phase diagram The critical end point Properties of mesons in matter –Baryon density vs. temperature.
V. Mochalov (IHEP, Protvino) on behalf of the PANDA collaboration PANDA PHYSICS WITH THE USE OF ANTIPROTON BEAM.
Hybrid Mesons and Spectroscopy Curtis A. Meyer Carnegie Mellon University Based on C.A. Meyer and Y. Van Haarlem, Phys. Rev. C82, (2010). Overview.
Forefront Issues in Meson Spectroscopy
Goals of future p-pbar experiment Elmaddin Guliyev Student Seminar, KVI, Groningen University 6 November 2008.
– A Novel Detector For Frontier Physics Andrey Sokolov Institute of Nuclear Physics, Jülich Research Center, Germany XVIII International Baldin.
Günther Rosner FAIR UK DL, 25/01/06 1 antiProton Annihilation at DArmstadt Physics programme  Quark confinement: Charmonium spectroscopy 
Light Hadron Spectroscopy at BESIII Haolai TIAN (On behalf of the BESIII Collaboration) Institute of High Energy Physics, Beijing 23rd Rencontre de Blois.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Introduction: Why is QCD so much fun? The Physics: Glue and Charm:
Exotic and non-Exotic Charmonium Spectroscopy with FAIR Klaus Peters on behalf of the PANDA Collaboration GSI and U Frankfurt TU Munich, Oct 11,
Project D: Hidden Charm Exotics at BES III Klaus J. Peters, Institut für Kernphysik, Goethe Universität Frankfurt The QuestBESIII Findings Research GroupWorkpackages.
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
May 31, 2006 CIPANP Glueballs, Hybrids & Exotics Curtis A. Meyer Carnegie Mellon University May 31, 2006 An Experimental & Phenomenological Overview.
May 14, 2003 Curtis A. Meyer 1 Carnegie Mellon University May 14, 2003 An Experimental Overview of Gluonic Mesons.
Hot Topics in Hadron Spectroscopy Diego Bettoni INFN, Ferrara, Italy 50. International Winter Meeting on Nuclear Physics Bormio, Italy, January 2012.
D. Bettoni - The Panda experiment 1 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential.
The Fermilab E760/E835 experiments (JETFNAL)
Recent results on light hadron spectroscopy at BES
Plans for nucleon structure studies at PANDA
Section IX - Quark Model of Hadrons
Study of charmonium(-like) states at the Belle experiment
Interpretation of the observed hybrid candidates by the QGC Model
Presentation transcript:

H. Koch, SFAIR, Lund, Sept , 2005 Hadron Physics with Antiprotons  Overview  Physics with PANDA (see J. Ritman, U. Wiedner) – Hadron Spectroscopy – Properties of Hadrons in Matter – Double  -Hypernuclei – Options  Conclusions

H. Koch, SFAIR, Lund, Sept , 2005 Overview on p-induced Reactions High Energy: pp-Colliders ( CERN, Fermilab ) Discovery of Z 0, W ± Discovery of t-Quark Medium Energy: Conventional p-beams ( LBL, BNL, CERN, Fermilab, KEK,... ) p-Storage Rings ( LEAR (CERN); Antiproton Accumulator (Fermilab) ) p-N interaction Meson Spectroscopy (u, d, s, c) p-nucleus Interaction Hypernuclei Antihydrogen Low Energy (Stopped p‘s): Conventional p-beams p-Storage Rings ( LEAR, AD (CERN) ) p-Atoms (pHe) p/p-mass ratio Antihydrogen FAIR-Project Higher p-energies (≤ 15 GeV) Cooled p-beams Much higher luminosities

H. Koch, SFAIR, Lund, Sept , 2005 UNILAC SIS FRS ESR SIS 100/300 HESR Super FRS NESR CR RESR Existing Future Project PANDA PAX FLAIR CBM

H. Koch, SFAIR, Lund, Sept , 2005

Hadron Spectroscopy Naive Quark Model: Mesons (Resonances) = qq-states Baryons (Resonances) = qqq-states Particular states: cc = Charmonium (QCD-analog to e + e – -Positronium states) LQCD + Model calculations: Existence of exotic states New feature: Spin-exotic quantum numbers possible, not allowed in qq (J PC = 0 +–, 1 –+,...)

H. Koch, SFAIR, Lund, Sept , 2005 Charmonium – the Positronium of QCD Positronium Charmonium

H. Koch, SFAIR, Lund, Sept , 2005 cc(g) - Lattice Predictions 42] K. Juge, J. Kuti, and C. Morningstar, Phys. Rev. Lett. 90, (2003).

H. Koch, SFAIR, Lund, Sept , 2005 Glueballs Self interaction between gluons  Construction of color-neutral hadrons with gluons possible exotic glueballs don‘t mix with mesons (qq) 0 --, 0 +-, 1 -+, 2 +-, 3 -+,... C. Morningstar PRD60, (1999) g g g

H. Koch, SFAIR, Lund, Sept , 2005 PANDA – Hadron Spectroscopy Program Mass range:

H. Koch, SFAIR, Lund, Sept , 2005 PANDA – Hadron Spectroscopy Program Experiments cc :  c (1 1 S 0 ) experimental error on M > 1 MeV  hard to understand in simple quark models  c ’ (2 1 S 0 ) Crystal Ball result way off study of hadronic decays h c ( 1 P 1 ) Spin dependence of QQ potential Compare to triplet P-States LQCD  NRQCD States above the DD threshold Higher vector states not confirmed  (3S),  (4S) Expected location of 1st radial excitation of P wave states Expected location of narrow D wave states, only  (3770) seen Sensitive to long range Spin-dependent potential Nature of the new X(3872)/ X(3940), Y(3940) and Z(3940)

H. Koch, SFAIR, Lund, Sept , 2005 PANDA – Hadron Spectroscopy Program Hybrids (ccg) : ? Example: Ground State Decay modes: ,  Decay modes: J/  ; D*D

H. Koch, SFAIR, Lund, Sept , 2005 PANDA – Hadron Spectroscopy Program Predictions: Masses: GeV/c 2 (Ground state found? ; Candidates for further states?) Quantum numbers: Several spin exotics (oddballs), e.g. J PC = 2 +- (4.3 GeV/c 2 ) Widths: ≥ 100 MeV/c 2 – Decay into two lighter glueballs often forbidden because of q.-n. – No mixing effects for oddballs Glueballs (gg) Decays: , , 

H. Koch, SFAIR, Lund, Sept , 2005 PANDA – Hadron Spectroscopy Program Open Charm States The D S ± spectrum |cs> + c.c. was not expected to reveal any surprises, but... –Potential model –Old measurements –New observations (BaBar, CLEO-c, Belle) Or these are molecules? New observations

H. Koch, SFAIR, Lund, Sept , 2005 Merits of Antiprotons (1) Measured rate Beam Resonance cross section CM Energy In pp-annihilation all mesons can be formed Resolution of the mass and width is only limited by the (excellent) beam momentum resolution Example: pp   1,2   J/    e + e – In contrast: In e + e – -annihilation only J PC = 1 -- can be found e + e –  J/ , e + e –   1,2

H. Koch, SFAIR, Lund, Sept , 2005 Merits of Antiprotons (2) p-beams can be cooled  Excellent beam momentum resolution

H. Koch, SFAIR, Lund, Sept , 2005 High Resolution of M and   Crystal Ball: typical resolution ~ 10 MeV  Fermilab: 240 keV  PANDA: ~20 keV   p/p ~ needed

H. Koch, SFAIR, Lund, Sept , 2005 Merits of Antiprotons (3) pp-cross sections high  Data with very high statisties Example: pp   0  0  0 (LEAR)  f 0 (1500) = best candidate for Glueball ground state Low final state multiplicities: Clean spectra, Good for PWA analyses

H. Koch, SFAIR, Lund, Sept , 2005 Merits of Antiprotons (4) High probability for production of exotic states Example: pp   0  0 :  (1400) (J PC = 1 –+ ) = candidate for Hybrid ground state ^

H. Koch, SFAIR, Lund, Sept , 2005 Properties of Hadrons in Matter Mass splittings because charge conjugation symmetry broken at n B  0 Overall attraction of Kaons due to scalar interaction: KN sigma term Mass splitting due to vector interaction: Weinberg-Tomozawa c d _ d d u c _ d repulsive attractive D-D- D+D+ d d u d d u d d u d d u d d u K – (su): m s /m u ≈ 40 D + (cd): m c /m d ≈ 200  Quark atom

H. Koch, SFAIR, Lund, Sept , 2005 J/ ,  Absorption in Nuclei J/  absorption cross section in nuclear matter p + A  J/  + (A–1)

H. Koch, SFAIR, Lund, Sept , 2005 Douple  -Hypernuclei Hypernuclei open a 3 rd dimension (strangeness) in the nuclear chart Double-hypernuclei: very little data Baryon-baryon interactions:  -N only short ranged (no 1  exchange due to isospin)  impossible in scattering reactions -- 3 GeV/c K+K Trigger _  secondary target p  - (dss) p(uud)   (uds)  (uds) –– ––

H. Koch, SFAIR, Lund, Sept , 2005 Timelike Proton Form Factors at large Q 2 The time like FF remains about a factor 2 above the space like. These differences should vanish in pQCD, thus the asymptotic behavior has not yet been reached at these large values of |q 2 |. (HESR up to s ~ 25 GeV 2 ) (PANDA probably up to 20 GeV 2 ) q 2 >0 q 2 <0

H. Koch, SFAIR, Lund, Sept , 2005 Physics Program / Further Options – Baryon Spectroscopy New states, Quantum numbers and decay rates

H. Koch, SFAIR, Lund, Sept , 2005 Physics Program / Further Options Direct CP-Violation (SCS) – CP-Violation in charmed region – Direct CP-Violation in ,  -decays Compare angular decay asymmetries Prediction (SM) ≈ 2x10 -5 HESR: 1 year of beamtime

H. Koch, SFAIR, Lund, Sept , 2005 Physics Program / Further Options Study of reversed Deeply Virtual Compton Scattering (DVCS)  Nucleon structure functions

H. Koch, SFAIR, Lund, Sept , 2005 Conclusions  Enormous impact in particle physics of p-induced reactions  p-induced reactions have unique features – Nearly all states can be directly produced – High cross sections guarantee high statistics data  p-beams can be cooled very effectively  The planned p-experiments at FAIR will contribute to a further understanding of the non-perturbative sector of QCD

H. Koch, SFAIR, Lund, Sept , 2005 Charmonium Production in pp * for selected decay mode ** L = 2x10 32 cm –2 s –1, 50% accelerator and detector efficiency, integrated luminosity = 8 pb –1 /day *** 1% B.R. for this decay mode

H. Koch, SFAIR, Lund, Sept , 2005 QCD-Vacuum as function of p and T

H. Koch, SFAIR, Lund, Sept , 2005 HESR / PANDA Production Rates (1-2 (fb) -1 /y) Final Statecross section# reconstr. events/y Common Feature : Low multiplicity events Moderate particle energies For Pairs : Charge symmetric conditions Trigger on one, investigate the other

H. Koch, SFAIR, Lund, Sept , 2005 Charmonium PhysicsD DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 1 ) ψ(1 3 D 3 ) ψ(1 3 D 2 ) η c (2 1 S 0 ) D* D * ψ(2 3 S 1 ) J/ψ(1 3 S 1 ) ψ(3 3 S 1 )  c2 (1 3 P 2 )  c0 (1 3 P 0 )  c1 (1 3 P 1 ) h 1c (1 1 P 1 )  c0 (2 3 P 0 )  c1 (2 3 P 1 )  c2 (2 3 P 2 ) h 1c (2 1 P 1 ) η c (1 1 S 0 ) η c (3 1 S 0 ) J P = (0,1,2) (1,2,3) - Are (4040) and  (4160) strong mixtures of the  (3S) and hybrid charmonium states or  (4040) is D * D*- molecule? 2.9 M c c [GeV/c 2 ] ψ(4 3 S 1 ) X(3872) D sJ *D sJ * Is the narrow X (3872) state D 0 D* molecule? Most states above DD not measured Measure decay branching ratios P lab [GeV/c]

H. Koch, SFAIR, Lund, Sept , 2005 Threshold production of D sJ (2317) * Depend on internal structure the width of D sJ can be different: – Current limit  4.9 MeV –  -doubling  10 keV – Phenomenological  130 keV – D s K – molecules  200 keV *

H. Koch, SFAIR, Lund, Sept , 2005 Crypto-exotic Baryons with Charm ? J.Hofmann & M.Lutz hep-ph/ Many Narrow Resonances Decays to  N

H. Koch, SFAIR, Lund, Sept , 2005 HESR: High Energy Storage Ring Beam Momentum GeV/c High Intensity Mode: Luminosity 2x10 32 cm -2 s -1 (2x10 7 Hz)  p/p(st. cooling)~10 -4 High Resolution Mode: Luminosity 2x10 31 cm -2 s -1  p/p(e- cooling)~10 -5