Gravitational lensing and the problem of faint galaxies Alicia Berciano Alba (JIVE / Kapteyn institute) Mike Garret (JIVE) Leon Koopmans (Kapteyn institute)

Slides:



Advertisements
Similar presentations
Dr. Léon Koopmans (Kapteyn Institute) Prof. Mike Garrett (ASTRON) Dr. Olaf Wucknitz ( AIfA Bonn) OZ Lens 2008, Sydney (Australia) OZ Lens 2008, Sydney.
Advertisements

Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
Spitzer Observations of 3C Quasars and Radio Galaxies: Mid-Infrared Properties of Powerful Radio Sources K. Cleary 1, C.R. Lawrence 1, J.A. Marshall 2,
Ray Norris, Jamie Stevens, et al. Deep CABB observations of ECDFS ( Extended Chandra Deep Field South )
EVIDENCE FOR A POPULATION OF HIGH REDSHIFT SUBMILLIMETER GALAXIES Joshua D. Younger Harvard/CfA.
The SMA CO(6-5) & 690 GHz Continuum Observations of Arp 220 Satoki Matsushita (ASIAA) D. Iono (CfA), C.-Y. Chou (ASIAA), M. Gurwell (CfA), P.-Y. Hsieh.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
The GMRT Radio Halo survey Results and implications for LOFAR Simona Giacintucci Harvard-Smithsonian CfA, Cambridge, USA INAF-IRA, Bologna, Italy T. Venturi,
Swift/BAT Hard X-ray Survey Preliminary results in Markwardt et al ' energy coded color.
Neutral Hydrogen Gas in Abell 370, a Galaxy Cluster at z = 0.37 NCRA 17 th July 2008 Philip Lah.
A Bolometric Approach To Galaxy And AGN Evolution. L. L. Cowie Venice 2006 (primarily from Wang, Cowie and Barger 2006, Cowie and Barger 2006 and Wang.
School of something FACULTY OF OTHER School of Physics & Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES AMI and Massive Star Formation Melvin Hoare.
Early results from the IRS Jim Houck and the IRS team - AAS Denver 6/1/04.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
The SMA CO(6-5) & 690 GHz Continuum Observations of Arp 220 Satoki Matsushita (ASIAA) D. Iono (CfA), C.-Y. Chou (ASIAA), M. Gurwell (CfA), P.-Y. Hsieh.
The Evolution of Stars and Gas in Galaxies: PhD Midterm Philip Lah A journey with noise and astrometry.
Mapping the COSMOS at 1 mm using Bolocam James Aguirre University of Colorado, Boulder H. Aussel (2), A. Blain (3), J. Bock (4), C. Borys (3), S. Eales.
PRESIDENCY UNIVERSITY
Neutral Hydrogen Gas in Star Forming Galaxies at z=0.24 Philip Lah Frank Briggs (ANU) Jayaram Chengalur (NCRA) Matthew Colless (AAO) Roberto De Propris.
EMerlin lenses and starbursts from the widest-area Herschel and SCUBA-2 surveys Stephen Serjeant, July 17th 2007.
Neutral Hydrogen Gas in Star Forming Galaxies at z=0.24 HI Survival Through Cosmic Times Conference Philip Lah.
Dusty star formation at high redshift Chris Willott, HIA/NRC 1. Introductory cosmology 2. Obscured galaxy formation: the view with current facilities,
1 GRB Host Galaxies S. R.Kulkarni, E. J. Berger & Caltech GRB group.
The e-MERGE Legacy Survey – an e-MERLIN+JVLA Ultra-Deep Survey Tom Muxlow JBCA Manchester Ian Smail, Ian McHardy & the e-MERGE Consortium EVN Symposium.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Deep, wide-field global VLBI observations of HDF-N Deep, wide-field global VLBI observations of HDF-N Seungyoup Chi Kapteyn Institute (RuG) / JIVE Collaborators.
1 Galaxies at Cosmic Dawn Revealed in the First Year of the Hubble Frontier Fields Initiative Dr. Gabriel Brammer (ESA/AURA, STScI) Hubble Science Briefing.
Molecular Gas and Dust in SMGs in COSMOS Left panel is the COSMOS field with overlays of single-dish mm surveys. Right panel is a 0.3 sq degree map at.
GRAVITATIONAL LENSING
RADIO OBSERVATIONS IN VVDS FIELD : PAST - PRESENT - FUTURE P.Ciliegi(OABo), Marco Bondi (IRA) G. Zamorani(OABo), S. Bardelli (OABo) + VVDS-VLA collaboration.
Vandana Desai Spitzer Science Center with Lee Armus, Colin Borys, Mark Brodwin, Michael Brown, Shane Bussmann, Arjun Dey, Buell Jannuzzi, Emeric Le Floc’h,
Low Power Compact radio galaxies at high angular resolution Marcello Giroletti INAF Istituto di Radioastronomia & G. Giovannini (UniBO, IRA) G. B. Taylor.
High Angular Resolution SMA Imaging of High Redshift Galaxies at 345 GHz Alison Peck (CfA), Daisuke Iono (NAOJ), Glen Petitpas (CfA) and the SMA Team Abstract.
Four hot DOGs eaten up with the EVN Sándor Frey (FÖMI SGO, Hungary) Zsolt Paragi (JIVE, the Netherlands) Krisztina Gabányi (FÖMI SGO, Hungary) Tao An (SHAO,
High-Redshift Galaxies in Cluster Fields Wei Zheng, Larry Bradley, and the CLASH high-z search group.
“Nature and Descendants of Sub-mm and Lyman-break Galaxies in Lambda-CDM” Juan Esteban González Collaborators: Cedric Lacey, Carlton Baugh, Carlos Frenk,
Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille.
The effects of the complex mass distribution of clusters on weak lensing cluster surveys Zuhui Fan Dept. of Astronomy, Peking University.
Observing Strategies at cm wavelengths Making good decisions Jessica Chapman Synthesis Workshop May 2003.
X-RAY FOLLOW-UP OF STRONG LENSING OBJECTS: SL2S GROUPS (AND A1703) FABIO GASTALDELLO (IASF-MILAN, UCI) M. LIMOUSIN & THE SL2S COLLABORATION.
Array for Microwave Background Anisotropy AMiBA SZ Science AMiBA Team NTU Physics Figure 4. Simulated AMiBA deep surveys of a 1deg 2 field (no primary.
INFRARED-BRIGHT GALAXIES IN THE MILLENNIUM SIMULATION AND CMB CONTAMINATION DANIEL CHRIS OPOLOT DR. CATHERINE CRESS UWC.
Elizabeth Stanway - Obergurgl, December 2009 Lyman Break Galaxies as Markers for Large Scale Structure at z=5 Elizabeth Stanway University of Bristol With.
Submillimeter Array CH3OH A Cluster of Highly Collimated and Young Bipolar Outflows Emanating from OMC1 South. Luis A. Zapata 1,2, Luis.
The Environment of MAMBO Galaxies in the COSMOS field Manuel Aravena F. Bertoldi, C. Carilli, E. Schinnerer, H. J. McCracken, K. M. Menten, M. Salvato.
December 17, 2008 The EVLA Vision Galaxies Through CosmicTime 1 Microjansky Radio Sources: AGN or Star Formation? Ken Kellermann & EdFomalont NRAO in collaboration.
Multi-Frequency Observations of the Gravitational Lens B Anupreeta More Max-Planck-Institut fuer Radioastronomie, Bonn Supervisor : Richard Porcas.
Exploringthe μJy and nJy Sky with the EVLA and the SKA Ken Kellermann NRAO East Asia SKA Workshop December 3, /2/20111KASI, Daejeon, Korea.
ALMA and the Formation of Galaxies Pierre Cox IAS, Orsay, France.
Methanol Masers in the NGC6334F Star Forming Region Simon Ellingsen & Anne-Marie Brick University of Tasmania Centre for Astrophysics of Compact Objects.
Cosmos Survey PI Scoville HST 590 orbits I-band 2 deg. 2 !
A multi-band view on the evolution of starburst merging galaxies A multi-band view on the evolution of starburst merging galaxies Yiping Wang (王益萍) Purple.
Observations of Near Infrared Extragalactic Background (NIREBL) ISAS/JAXAT. Matsumoto Dec.2-5, 2003 Japan/Italy seminar at Niigata Univ.
AGN / Starbursts in the very dusty systems in Bootes Kate Brand + the Bootes team NOAO Lijiang, August 2005.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
National Radio Astronomy Observatory EVLA Workshop Deeper Knowledge Through Confusion Jim Condon.
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
J. L. Higdon, S. J. U. Higdon, D. Weedman, J. Houck (Cornell) B. T. Soifer (Caltech), B. Jannuzi, A. Dey, M. Brown (NOAO) E. Le Floc’h, & M. Rieke (Arizona)
The Radio Properties of Type II Quasars PLAN Type II quasars Motivations Our sample Radio observations Basic radio properties Compare our results with.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Figure 1. HATLAS J (z = , marked with vertical line)
Portrait of a Forming Massive Protocluster: NGC6334 I(N)
NICMOS Measurements of the Near Infrared Background
Evidence for a Population of high redshift Submm Galaxies
High Resolution Submm Observations of Massive Protostars
Probing the Faint Radio Population
ALMA and Cosmology The high-redshift Universe Advantages of mm/submm
Black Holes in the Deepest Extragalactic X-ray Surveys
Presentation transcript:

Gravitational lensing and the problem of faint galaxies Alicia Berciano Alba (JIVE / Kapteyn institute) Mike Garret (JIVE) Leon Koopmans (Kapteyn institute)

The problem of sub-mm Galaxies Hughes et al. (Nature 1998)

Nature of sub-mm galaxies SCUBA sources = faint dusty star forming galaxies at high z At low z  rare objects (M82, Arp220) Massive stars die like SN a lot of dust A lot of uv-radiation FIR Emission obscured in optical but not in sub-mm and radio At high z  the peak is shifted from FIR to sub-mm electrons

Solution: Gravitational lensing as a telescope If we are lucky… YES, we are : very massive object Between sub-mm source and us stron g GL effect several images with magnification in size and flux density we can “see” the iceberg below the sea MS Abell 2218 GL in clusters of galaxies

Abell 2218 Sources: Star forming galaxy (z=2.516)  3 images arc#289 (Z=1.034) Data: Optical images (HST) NIR imagin / spectroscopy (WHT/ Keck) Sub-mm (SCUBA 850  m) Radio (VLA 8.2 GHz / WSRT 1.4 GHz) VLA (8.2 GHz) SMM intrinsic flux density 3  Jy 1  rms Noise6  Jy/beam Integration time with lensing 24 h (4  ) Integration time without lensing 100 days (5  ) Garrett et al. (2005) Kneib et al. (2004) Knudsen (2004) Sheth et al. (2004) Kneib et al. (2004) arc#289

DATA - Optical image (HST) - VLT (Very Large Telescope) spectrocopy - Sub-mm (SCUBA 850 mm)  solid line - X-ray (Chandra)  dotted line - X-ray point sources (Molar et al. 2002)  croses - NIR (Near Infra-Red) objects  circles SOURCES - 2 lens images of a fold arc (ARC1)  LBG - 3 lens images of 2 objects (B/C)  2 EROs - P  very blue object MS Borys et al. (2004)

Trying to find the radio counterpart… Data -From VLA archive -Freq = 1.36 GHz (L-band) AB config. -Obs time (”on-source” ) = 7h 46min -1  rms = 9  Jy / beam Cluster´s centre

 Radio emission is coincident with the sub-mm emission & extended on the same angular scale.  Radio & sub-mm emission due to the same source(s)  Two emissions magnified by GL effect Radio  St > 100  Jy (few tens  Jy) Sub-mm  St >>10 mJy (few mJy) S 850  m / S 1.4 Ghz ~ 100  as we expect The Comparison Between Sub-mm and radio alineation problem

Borys et al. conclusions Sources of sub-mm emission ARC1 (LBG) B/C pair (EROs)2/3 of the total flux Borys et al. can´t reproduce the sub-mm emission!!!

Our preliminar Results B1/C1 at the edge of the radio emission  maybe not related with the emissions? We can explain the elongation in the top of sub-mm emission  new radio source We can explain the gap in the borys simulation  3 new radio sources No radio detection in B3/C3  is not a surprise

Future Work Obtain the HST and SCUBA images from Borys to make a correct alignament with the radio image know the error positions of ARC1 and EROs Try to reproduce the detailed morphology of the radio map with a similar simulation used by Borys Understand what´s going on with the radio image in terms of lensing model Make a tapered low resolution and higher resolution uniformly weighted image of the radio data Look for more data in the VLA rachive (5 and 8 GHz) Apply for VLA data in A configuration  1” resolution (instead of the actual 5” resolution)

Conclusions We detect the second multiply imaged radio emission associated with massive cluster lensing We find 1 radio source to explain the the excess of scuba emission in the top left part of the image We find 3 radio sources to explain the gap in Bory´s simulation We can´t be sure about the contribution of the B/C pair in the radio and sub-mm emissions The answer (I hope) in the next meeting…

Our preliminar results B1/C1 are not in the peak of the radio image The peak of the radio image have the same orientation as the sub-mm image We can explain the gap in the Borys´ simulation  2 radio images The middle radio source could be associated with one of the Tanaka´s EROs

Summary The only way to detect this sources is through the GL effect We have 2 systems with sub-mm and radio to study their nature  we are looking for more We must finish the analysis of radio data in MS The case of MS is more complex than A2218  we need better radio images to know the nature of the sub-mm emmision

The problem of sub-mm Galaxies Faint SMG dominate energetically the cosmic far-infrared background (Knudsen 2004) SCUBA-detected galaxies are often extremely faint in the optical because the dust responsible for the sub-mm luminosity absorbs radiation at other wavelenghts  redshifts, morphologies and spectral energy distributions are dificult to obtain With current sensitivity limits, actual telescopes can only detect the bright tail of the SMG population Flux density of SMG  < 2mJy

WSRT 1.4 GHz Contours= -3, 3, 5, 10, 20,  noise level = 15  Jy / beam Integration time=12 h VLA 8.2 GHz Contours = -3, 3, 4, 7,  noise level = 6  -Jy / beam Integration time= 24 h Garrett et al Abell 2218 (radio)

Abell 2218 Sources: Star forming galaxy (z=2.516)  3 images arc#289 (Z=1.034) Data: Optical images (HST) NIR imagin / spectroscopy (WHT/ Keck) Sub-mm (SCUBA 850 mm) Radio (VLA 8.2 GHz / WSRT 1.4 GHz) SCUBA (850 mJy) WSRT (1.4 GHz) VLA (8.2 GHz) SMM intrinsic flux density 0.8 mJy 14  Jy3  Jy Noise2 mJy 15  Jy / beam6  Jy / beam Integration time 39.7 h12 h (24 days)24 h (36 days) Garrett et al. (2005) Kneib et al. (2004) Knudsen et al. (2004) Sheth et al. (2004)

Abell 2218 (sub-mm) Sub-mm sources (SCUBA 850 mJy) -Star forming galaxy (z=2.516)  3 images -SMM J (Z=1.034)  arc#289 Kneib et al. (2004b) SMM A SMM B SMM C Arc#289 Observed total flux density M-JyMagnif SMM-A11 m-Jy14 SMM-B17 m-Jy22 SMM-C9 m-Jy9 Arc# m-Jy7 Knudsen (2004)

Abell 2218 Sources: Star forming galaxy (z=2.516)  3 images arc#289 (Z=1.034) Data: Optical images (HST) NIR imagin / spectroscopy (WHT/ Keck) Sub-mm (SCUBA 850  m) Radio (VLA 8.2 GHz / WSRT 1.4 GHz) SCUBA (850 mJy) WSRT (1.4 GHz) VLA (8.2 GHz) SMM intrinsic flux density 0.8 mJy 14  Jy3  Jy 1  rms Noise 1.5 mJy/beam 15  Jy/beam6  Jy/beam Integration time with lensing 39.7 h (6  ) 12 h (7  ) 24 h (4  ) Integration time without lensing 145 days (5  ) 12.5 diays (5  ) 100 days (5  ) Garrett et al. (2005) Kneib et al. (2004) Knudsen (2004) Sheth et al. (2004) Kneib et al. (2004) arc#289

Nature of the sources ARC1 VLT spectroscopy  LBG (Lyman Break Galaxy) at z=2.911 Lens model (kneib et al / 96)  identification of ARC1 ci B/C pair NIR color–magnitude diagram  2 EROs Lens model  identification of the 3 images with correct parity if B/C pair it´s at z=2.85 problem ARC1 and B/C at aprox. same z  separation in source plane =10 kpc  3 interacting galaxies  origin of a violent starburst revealed by the strong sub-mm emission No x-ray detection of C2

Which is the source of the sum-mm emmision?? -Connection between sub-mm galaxies and EROs well stablished -ARC1 spectrum similar to the most absorved LBG  reddest and most dust-extinted Simulation - blank SCUBA-like map with sources in B1,B2,B3, ARC1 - relative fluxes fixed by lensing model predictions - the peak flux needs to match the observations  12 mJy - We need the two sources to expain the sub-mm observations - 2/3 of sub-mm flux is coming from the EROs Conclusions dusty starbust 4” to the NE of B3/C3 (Tanaka et al. 2003) They CAN´T reproduce the sub-mm observation only with this 2 sources

More problems…