Abundance patterns of r-process enhanced metal-poor stars Satoshi Honda 1, Wako Aoki 2, Norbert Christlieb 3, Timothy C. Beers 4, Michael W.Hannawald 2.

Slides:



Advertisements
Similar presentations
T.P. Idiart  and J.A. de Freitas Pacheco   Universidade de São Paulo (Brasil)  Observatoire de la Côte d’Azur (France) Introduction Elliptical galaxies.
Advertisements

Neutron-capture Elements in M15 Kaori Otsuki (U Chicago), S. Honda, W. Aoki, T. Kajino (NAOJ) J. W. Truran, V. Dwarkadas, A. Medina (U Chicago) G. J. Mathews.
Carbon Enhanced Stars in the Sloan Digital Sky Survey ( SDSS ) T. Sivarani, Young Sun Lee, B. Marsteller & T. C. Beers Michigan State University & Joint.
NUCLEOSYNTHESIS, THE R- PROCESS, ABUNDANCES AND JIM TRURAN J. J. COWAN University of Oklahoma JINA Frontiers 2010 : Workshop on Nuclear Astrophysics Yerkes.
S-Process in C-Rich EMPS: predictions versus observations Sara Bisterzo (1) Roberto Gallino (1) Oscar Straniero (2) I. I. Ivans (3, 4) and Wako Aoki, Sean.
New Frontiers in Nuclear and Particle Astrophysics: Time varying quarks MHD Jets Neutrino Mass Hierarchy G. J. Mathews – UND OMEG5-I Nov. 18, 2011 NAOJ,
INAF-Osservatorio Astronomico di Padova Dipartimento di Astronomia, Università di Padova.
The Search for New “r-process-Enhanced” Metal-Poor Stars Timothy C. Beers Michigan State University.
S-Process in low metallicity Pb stars: comparison between new theoretical results and spectroscopic observations Sara Bisterzo (1) Roberto Gallino (1),
Observations of Neutron-Capture Elements in the Early Galaxy Chris Sneden University of Texas at Austin.
Yutaka Komiya ( Tokyo Univ., RESCEU ) Collaborators Takuma Suda ( Tokyo Univ., RESCEU ) Shimako Yamada ( Hokkaido Univ. ) Masayuki Y. Fujimoto ( Hokkaido.
Outline  Introduction  The Life Cycles of Stars  The Creation of Elements  A History of the Milky Way  Nucleosynthesis since the Beginning of Time.
Chemical composition of the stars in the substructures of the Galaxy (-1 0.3) Mishenina T.V. 1 -Astronomical Observatory of Odessa National University,
New Constraints on Neutron- Capture Nucleosynthesis Processes Inese I. Ivans California Institute of Technology Hubble Fellows Symposium April 7, 2005.
Supernovae, Nucleosynthesis, and Constraints on Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago and.
1 Explosive nucleosynthesis in neutrino-driven, aspherical Pop. III supernovae Shin-ichiro Fujimoto (Kumamoto NCT, Japan) collaboration with M. Hashimoto.
How Old is the Universe? Here are some of the methods,
{ SDSS Timothy C. Beers National Optical Astronomy Observatory The AEGIS Survey (and more …)
Lecture 10 Metalicity Evolution Simple models for Z(  ( t ) ) (Closed Box, Accreting Box, Leaky Box) Z = - y ln(  ) = y ln( 1 /  ) “G dwarf problem”
NGC 2419 – the most bizarre Galactic globular cluster Judith Cohen (Caltech) & Evan Kirby (UC Irvine/Caltech) Conference: Small Stellar Systems, Tuscany,
Carbon-Enhanced Metal-Poor (CEMP) in the Milky Way KASI Seminar, May 27, 2015 Young Sun Lee Chungnam National University.
The Remarkable Chemical Compositions of Blue Metal-Poor Stars George Preston on behalf of Chris Sneden friends & collaborators George Preston (Carnegie.
{ Carbon-Enhanced Metal-Poor (CEMP) stars: probes of nucleosynthesis from the first generation of stars in the Universe SDSS Timothy C. Beers National.
Presolar grains and AGB stars Maria Lugaro Sterrenkundig Instituut University of Utrecht.
Inquiry into Low-Mass Star Survivors from the Early Universe and the Quest of First Generation Stars Masayuki Y. Fujimoto, Takuma Suda, Takanori Nishimura.
Chapter 16 – Chemical Analysis Review of curves of growth –The linear part: The width is set by the thermal width Eqw is proportional to abundance –The.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
THE FIRST STARS: THE FIRST STARS: Uranium-rich metal-poor star Uranium-rich metal-poor star CS CS
Anna Frebel University of Texas at Austin
Abundance Patterns to Probe Stellar Nucleosynthesis and Chemical Evolution Francesca Primas.
HST Observations of Low Z Stars HST Symposium, Baltimore May 3, 2004 Collaborators: Tim Beers, John Cowan, Francesca Primas, Chris Sneden Jim Truran.
Lecture 15 Explosive Nucleosynthesis and the r-Process.
Old Metal-Poor Stars: Observations and Implications for Galactic Chemical Evolution Timothy C. Beers Department of Physics & Astronomy and JINA: Joint.
Study of the s-process in low mass stars of Galactic disc metallicity
Chemical Composition of Planet-Host Stars Wonseok Kang Kyung Hee University Sang-Gak Lee Seoul National University.
Sulfur, manganese … in the Galaxy
Nuclear Physics and Low-Metallicity Stellar Abundances: Victories and Struggles Chris Sneden, University of Texas speaking on behalf of many friends and.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
Galactic Archaeology: The Lowest Metallicity Stars Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute.
Galactic Evolution Workshop NAOJ Sachie Arao, Yuhri Ishimaru (ICU) Shinya Wanajo(Riken) Nucleosynthesis of Elements heavier than Fe through.
52 0 Congresso SAIT - Teramo 2008 The Globular Clusters of the Large Magellanic Cloud : chemical abundances and ages Alessio Mucciarelli Università di.
Julie Hollek and Chris Lindner.  Background on HK II  Stellar Analysis in Reality  Methodology  Results  Future Work Overview.
1 The Most Metal-Poor Stars in the Galaxy Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear.
The Chemistry of Extrasolar Planetary Systems Jade Bond PhD Defense 31 st October 2008.
Chemical Evolution Models forDwarf Spheroidal Galaxies Gustavo A. Lanfranchi Núcleo de Astrofísica Teórica - Universidade Cruzeiro do Sul Chemical evolution.
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio, Oct 2003 Abundances in M92.
The Cecilia Payne-Gaposchkin Lecture Center for Astrophysics May 9, 2002.
The High Redshift Universe Next Door
Ryohei Fukuda 1, Motoaki Saruwatari 1, Masa-aki Hashimoto 1, Shin-ichiro Fujimoto 2 1 Department of Physics, Kyushu University, Fukuoka 2 Department of.
Mounib El Eid American University of Beirut Department of Physics Santa Tecla: Sept. 18, 2011 Nucleosynthesis & Cosmology Infrared light from first stars:
Is the 19 F problem in AGB C-stars solved ? C. Abia (UGR) S. Cristallo (UGR-INAF) K. Cunha (ORJ) P. de Laverny (OCA) I. Domínguez (UGR) K. Eriksson (Upssala)
Topics in Astronomical Spectroscopy : Evolution of Chemical Abundances based on the High Resolution Stellar Spectroscopy 2010, 1 학기 대학원 이상각 19 동
{ The Origin of the r-Process SDSS Timothy C. Beers University of Notre Dame.
and chemical evolution
Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project: Spectroscopic Analyses of the First ~80 Stars 5 May 2010 Julie Krugler.
The Chemical Signatures of First-Generation Stars
Discovery of the Chemical Signature of First-Generation Massive Stars
R-PROCESS SIGNATURES IN METAL-POOR STARS
the s process: messages from stellar He burning
Mysterious Abundances in Metal-poor Stars & The ν-p process
Timothy C. Beers University of Notre Dame
N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo),
New Trends of Physics 2005, Hokkaido University, March 1
Chapter 16 – Chemical Analysis
Lecture 11: Age and Metalicity from Observations
Y. Katsuta1), T. Suda1,2), S. Yamada1), N. Nishimura3),
Nucleosynthesis in Early Massive Stars: Origin of Heavy Elements
Myung-Ki Cheoun Department of Physics,
Presentation transcript:

Abundance patterns of r-process enhanced metal-poor stars Satoshi Honda 1, Wako Aoki 2, Norbert Christlieb 3, Timothy C. Beers 4, Michael W.Hannawald 2 Toshitaka Kajino 2, Hiroyasu Ando 2, Paul S. Barklem 3 1 Gunma Astronomical Observatory, 2 National Astronomical Observatory of Japan, 4 Michigan State University, 3 Uppsala Astronomical Observatory

Nucleosynthesis H 、 He 、( Li ) Big Bang Nucleosynthesis α-elements(Mg,Ca,Si…) 、 iron-peak Stellar nucleosynthesis αelements → Type II SNe iron → Type Ia SNe The elements heaver than iron Neutron capture s-process ( Ba, Pb, etc. ) AGB stars r-process ( Eu, Au, Th, etc. ) still unknown! Burbidge, Burbidge, Fowler, Hoyle 1957

Type II SNe neutrino wind cf. Woosley et al prompt explosion cf. Sumiyoshi et al Neutron star mergers cf. Rosswog et al Collapsars cf. Pruet et al NSM Freiburghaus et al SNe Wanajo et al Collapsar Fujimoto et al The possible site for the r-process

Observations of r-process enhanced stars Behavior of Eu abundance as a function of [Fe/H] Large dispersion in [Fe/H] < -2.5 Almost no data in [Fe/H]<-3 Honda et al Subaru/HDS Francois et al VLT/UVES Barklem et al Type II SNeType I SNe

Models of galactic chemical evolution Ishimaru et al [Fe/H] < - 3 is important ! Argast et al M Cescutti et al Tsujimoto et al NSM SNe Donder & Vanbeveren 2003 Mathews et al Argast et al ~ 50M solar

Observations of r-process enhanced stars Behavior of Eu abundance as a function of [Fe/H] Large dispersion in [Fe/H] < -2.5 Almost no data in [Fe/H]<-3 r-II star [Ba/Eu] < 0 r-II : [Eu/Fe]>+1 r-I : +1>[Eu/Fe]>+0.3 Beers & Christlieb 2005 Honda et al Subaru/HDS Francois et al VLT/UVES Barklem et al Type IIType I

Detailed analysis of r-II stars Universal pattern 56<Z<72 Th, (and U) line was detected. age determination Sneden et al Hill et al Christlieb et al CS CS CS Frebel et al HE decayed

Multiple r-process sites Some metal-poor stars show a significantly different abundance pattern from that of the solar system r- process abundance pattern. This results support the existence of two process (main and weak r-process). Sneden et al Honda et al CS HD HD88609

r-II stars discovered by HERES ← s-process rich stars are also included. follow-up observations are required. Barklem et al Hamburg/ESO R-process Enhanced Star survey

Subaru/HDS observations ( S05B-152) HE HE CS B (mag) Teff (K) [Fe/H] [Eu/Fe] Obs. date R ~ 50, ~ 5250 Å S/N 100 ~ 150 @ 4000 Å Christlieb et al. 2004, Barklem et al Honda et al These targets were obtained from HERES.

The spectra of r-II stars HE CS HE solar Wavelength (Å) Fe Eu Fe S/N 100 S/N 150

Behavior of Eu abundance as a function of metallicity r-II stars exists only in the region of -3.2<[Fe/H]<-2.6.

abundance patterns These objects are in agreement with the solar r -process pattern. No weak r-process. Sr Ba Eu Th La Ir

Abundance patterns of r-II stars CS , CS , CS , CS , HE , HE average Eu

The region of Th II 4019 line HE Th II CS HE The spectra of HE may contain the sky-background. CH It was not completely remove.

Thorium is detected in two objects Th II Nd II 12 CH Fe I 13 CH HE CS Uranium is undetectable.

Th/Eu as a function of [Fe/H] The ratio of Th/Eu show scatter. The width of the scatter is not so large. CS CS CS initial Th/Eu Sneden et al HE HE

Summary and future work We confirmed that those objects are r-II stars. r-II stars exist only in the region of -2.4 < [Fe/H] < These objects are in agreement with the solar r -process pattern. No weak r-process. The ratio of Th/Eu shows scatter. Remove the sky-background in the spectra of HE completely. Determine the upper limit of U 、 Pb abundances. More telescope time in dark night. The number of samples is increased. SEGUE, LAMOST, etc.