3 Radian Measure and Circular Functions

Slides:



Advertisements
Similar presentations
Trigonometric Functions
Advertisements

Copyright © 2008 Pearson Addison-Wesley. All rights reserved. 1-1 Angles 1.1 Basic Terminology ▪ Degree Measure ▪ Standard Position ▪ Coterminal Angles.
The Inverse Trigonometric Functions Section 4.2. Objectives Find the exact value of expressions involving the inverse sine, cosine, and tangent functions.
Review of Trigonometry
Copyright © 2009 Pearson Addison-Wesley Trigonometric Functions.
Copyright © Cengage Learning. All rights reserved. 4 Trigonometric Functions.
Unit Circle Definition of Trig Functions. The Unit Circle  A unit circle is the circle with center at the origin and radius equal to 1 (one unit). 
5.1 Inverse sine, cosine, and tangent
Copyright © 2005 Pearson Education, Inc. Chapter 3 Radian Measure and Circular Functions.
5 Trigonometric Functions Copyright © 2009 Pearson Addison-Wesley.
Rev.S08 MAC 1114 Module 3 Radian Measure and Circular Functions.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 1.
Copyright © 2007 Pearson Education, Inc. Slide 8-2 Chapter 8: Trigonometric Functions And Applications 8.1Angles and Their Measures 8.2Trigonometric Functions.
Copyright © Cengage Learning. All rights reserved. CHAPTER Radian Measure 3.
P.5 Trigonometric Function.. A ray, or half-line, is that portion of a line that starts at a point V on the line and extends indefinitely in one direction.
Copyright © 2005 Pearson Education, Inc.. Chapter 6 Inverse Circular Functions and Trigonometric Equations.
5.3 Right-Triangle-Based Definitions of Trigonometric Functions
Copyright © 2005 Pearson Education, Inc.. Chapter 6 Inverse Circular Functions and Trigonometric Equations.
Copyright © 2009 Pearson Addison-Wesley Inverse Circular Functions and Trigonometric Equations.
1 A unit circle has its center at the origin and a radius of 1 unit. 3.3 Definition III: Circular Functions.
Chapter 3 Radian Measure and Circular Functions.
Copyright © Cengage Learning. All rights reserved. CHAPTER Radian Measure 3.
Copyright © Cengage Learning. All rights reserved. 4 Trigonometric Functions.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
2 Acute Angles and Right Triangles © 2008 Pearson Addison-Wesley.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 4 Trigonometric Functions.
Copyright © 2009 Pearson Addison-Wesley Trigonometric Functions.
Copyright © 2008 Pearson Addison-Wesley. All rights reserved Fundamental Identities 5.2 Verifying Trigonometric Identities 5.3 Sum and Difference.
WEEK 10 TRIGONOMETRIC FUNCTIONS TRIGONOMETRIC FUNCTIONS OF REAL NUMBERS; PERIODIC FUNCTIONS.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 6 Inverse Circular Functions and Trigonometric Equations Copyright © 2013, 2009, 2005 Pearson Education,
Chapter 4 Trigonometric Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Trigonometric Functions: The Unit Circle.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 1 Trigonometric Functions.
4.4 Trigonmetric functions of Any Angle. Objective Evaluate trigonometric functions of any angle Use reference angles to evaluate trig functions.
Copyright © 2009 Pearson Addison-Wesley Radian Measure 6.2 The Unit Circle and Circular Functions 6.3 Graphs of the Sine and Cosine Functions.
4.3 Trigonometry Extended: The Circular Functions
1 © 2011 Pearson Education, Inc. All rights reserved 1 © 2010 Pearson Education, Inc. All rights reserved © 2011 Pearson Education, Inc. All rights reserved.
Chapter 5 Trigonometric Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Angles and Radian Measure.
Radian Measure One radian is the measure of a central angle of a circle that intercepts an arc whose length equals a radius of the circle. What does that.
Section 3 – Circular Functions Objective To find the values of the six trigonometric functions of an angle in standard position given a point on the terminal.
Copyright © Cengage Learning. All rights reserved. 4.2 Trigonometric Functions: The Unit Circle.
Copyright © 2009 Pearson Addison-Wesley Radian Measure and Circular Functions.
Trigonometric Functions: The Unit Circle  Identify a unit circle and describe its relationship to real numbers.  Evaluate trigonometric functions.
Copyright © 2009 Pearson Addison-Wesley Trigonometric Functions.
1 Copyright © Cengage Learning. All rights reserved. 1 Trigonometry.
Copyright © 2007 Pearson Education, Inc. Slide Evaluating Trigonometric Functions Acute angle A is drawn in standard position as shown. Right-Triangle-Based.
Copyright © 2009 Pearson Addison-Wesley The Circular Functions and Their Graphs.
Copyright © 2009 Pearson Addison-Wesley Trigonometric Identities and Equations.
Chapter 5 Trigonometric Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Trigonometric Functions of Real Numbers; Periodic Functions.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 3 Radian Measure and the Unit Circle.
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Copyright © 2005 Pearson Education, Inc.. Chapter 3 Radian Measure and Circular Functions.
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
3 Radian Measure and Circular Functions
Do Now A central angle of a circle with radius 150 cm cuts off an arc of 200 cm. Find each measure: the radian measure of the angle. the area of a sector.
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Chapter 1 Angles and The Trigonometric Functions
Lesson 4.2 Trigonometric Functions: The Unit Circle
5.1 The Unit Circle.
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Copyright © Cengage Learning. All rights reserved.
Chapter 8: Trigonometric Functions And Applications
5 Trigonometric Functions Copyright © 2009 Pearson Addison-Wesley.
3 Radian Measure and Circular Functions
5 Trigonometric Functions Copyright © 2009 Pearson Addison-Wesley.
5.3-part 1 The Circular Functions
Chapter 8: The Unit Circle and the Functions of Trigonometry
Chapter 8: Trigonometric Functions And Applications
Chapter 8: The Unit Circle and the Functions of Trigonometry
Trigonometric Functions: Unit Circle Approach
Presentation transcript:

3 Radian Measure and Circular Functions Copyright © 2009 Pearson Addison-Wesley

Radian Measure and Circular Functions 3 3.1 Radian Measure 3.2 Applications of Radian Measure 3.3 The Unit Circle and Circular Functions 3.4 Linear and Angular Speed Copyright © 2009 Pearson Addison-Wesley

The Unit Circle and Circular Functions 3.3 The Unit Circle and Circular Functions Circular Functions ▪ Finding Values of Circular Functions ▪ Determining a Number with a Given Circular Function Value ▪ Applying Circular Functions Copyright © 2009 Pearson Addison-Wesley 1.1-3

Circular Functions A unit circle has its center at the origin and a radius of 1 unit. The trigonometric functions of angle θ in radians are found by choosing a point (x, y) on the unit circle can be rewritten as functions of the arc length s. When interpreted this way, they are called circular functions. Copyright © 2009 Pearson Addison-Wesley

Circular Functions For any real number s represented by a directed arc on the unit circle, Copyright © 2009 Pearson Addison-Wesley 1.1-5

The Unit Circle Copyright © 2009 Pearson Addison-Wesley

The Unit Circle The unit circle is symmetric with respect to the x-axis, the y-axis, and the origin. If a point (a, b) lies on the unit circle, so do (a,–b), (–a, b) and (–a, –b). Copyright © 2009 Pearson Addison-Wesley

The Unit Circle For a point on the unit circle, its reference arc is the shortest arc from the point itself to the nearest point on the x-axis. For example, the quadrant I real number is associated with the point on the unit circle. Copyright © 2009 Pearson Addison-Wesley

Copyright © 2009 Pearson Addison-Wesley 1.1-9

The Unit Circle Since sin s = y and cos s = x, we can replace x and y in the equation of the unit circle to obtain the Pythagorean identity Copyright © 2009 Pearson Addison-Wesley

Domains of Circular Functions Sine and Cosine Functions: Tangent and Secant Functions: Cotangent and Cosecant Functions: Copyright © 2009 Pearson Addison-Wesley 1.1-11

Evaluating A Circular Function Circular function values of real numbers are obtained in the same manner as trigonometric function values of angles measured in radians. This applies both to methods of finding exact values (such as reference angle analysis) and to calculator approximations. Calculators must be in radian mode when finding circular function values. Copyright © 2009 Pearson Addison-Wesley 1.1-12

Find the exact values of Example 1 FINDING EXACT CIRCULAR FUNCTION VALUES Find the exact values of Evaluating a circular function at the real number is equivalent to evaluating it at radians. An angle of intersects the circle at the point (0, –1). Since sin s = y, cos s = x, and Copyright © 2009 Pearson Addison-Wesley 1.1-13

Use the figure to find the exact values of Example 2(a) FINDING EXACT CIRCULAR FUNCTION VALUES Use the figure to find the exact values of The real number corresponds to the unit circle point Copyright © 2009 Pearson Addison-Wesley 1.1-14

yields the same ending point as moving around the Example 2(b) FINDING EXACT CIRCULAR FUNCTION VALUES Use the figure and the definition of tangent to find the exact value of negative direction yields the same ending point as moving around the Moving around the unit circle units in the circle units in the positive direction. Copyright © 2009 Pearson Addison-Wesley 1.1-15

Example 2(b) corresponds to FINDING EXACT CIRCULAR FUNCTION VALUES Copyright © 2009 Pearson Addison-Wesley 1.1-16

An angle of corresponds to an angle of 120°. Example 2(c) FINDING EXACT CIRCULAR FUNCTION VALUES Use reference angles and degree/radian conversion to find the exact value of An angle of corresponds to an angle of 120°. In standard position, 120° lies in quadrant II with a reference angle of 60°, so Cosine is negative in quadrant II. Copyright © 2009 Pearson Addison-Wesley 1.1-17

Find a calculator approximation for each circular function value. Example 3 APPROXIMATING CIRCULAR FUNCTION VALUES Find a calculator approximation for each circular function value. (a) cos 1.85 ≈ –.2756 (b) cos .5149 ≈ .8703 Copyright © 2009 Pearson Addison-Wesley 1.1-18

Find a calculator approximation for each circular function value. Example 3 APPROXIMATING CIRCULAR FUNCTION VALUES (continued) Find a calculator approximation for each circular function value. (c) cot 1.3209 ≈ .2552 (d) sec –2.9234 ≈ –1.0243 Copyright © 2009 Pearson Addison-Wesley 1.1-19

Caution A common error in trigonometry is using a calculator in degree mode when radian mode should be used. Remember, if you are finding a circular function value of a real number, the calculator must be in radian mode. Copyright © 2009 Pearson Addison-Wesley 1.1-20

Use the inverse cosine function of a calculator. Example 4(a) FINDING A NUMBER GIVEN ITS CIRCULAR FUNCTION VALUE Approximate the value of s in the interval if cos s = .9685. Use the inverse cosine function of a calculator. , so in the given interval, s ≈ .2517. Copyright © 2009 Pearson Addison-Wesley 1.1-21

Find the exact value of s in the interval if tan s = 1. Example 4(b) FINDING A NUMBER GIVEN ITS CIRCULAR FUNCTION VALUE Find the exact value of s in the interval if tan s = 1. Recall that , and in quadrant III, tan s is negative. Copyright © 2009 Pearson Addison-Wesley 1.1-22

Example 5 MODELING THE ANGLE OF ELEVATION OF THE SUN The angle of elevation of the sun in the sky at any latitude L is calculated with the formula where corresponds to sunrise and occurs if the sun is directly overhead. ω is the number of radians that Earth has rotated through since noon, when ω = 0. D is the declination of the sun, which varies because Earth is tilted on its axis. Copyright © 2009 Pearson Addison-Wesley 1.1-23

Example 5 MODELING THE ANGLE OF ELEVATION OF THE SUN (continued) Sacramento, CA has latitude L = 38.5° or .6720 radian. Find the angle of elevation of the sun θ at 3 P.M. on February 29, 2008, where at that time, D ≈ –.1425 and ω ≈ .7854. Copyright © 2009 Pearson Addison-Wesley 1.1-24

The angle of elevation of the sun is about .4773 radian or 27.3°. Example 5 MODELING THE ANGLE OF ELEVATION OF THE SUN (continued) The angle of elevation of the sun is about .4773 radian or 27.3°. Copyright © 2009 Pearson Addison-Wesley 1.1-25