6.1 The Fundamental Property of Rational Expressions Rational Expression – has the form: where P and Q are polynomials with Q not equal to zero. Determining.

Slides:



Advertisements
Similar presentations
Operations on Rational Expressions Review
Advertisements

Objective SWBAT simplify rational expressions, add, subtract, multiply, and divide rational expressions and solve rational equations.
The Fundamental Property of Rational Expressions
Chapter 7 - Rational Expressions and Functions
Section 6.1 Rational Expressions.
Rational Expressions To add or subtract rational expressions, find the least common denominator, rewrite all terms with the LCD as the new denominator,
Addition and Subtraction with Like Denominators Let p, q, and r represent polynomials where q ≠ 0. To add or subtract when denominators are the same,
5.1 Linear Equations A linear equation in one variable can be written in the form: Ax + B = 0 Linear equations are solved by getting “x” by itself on.
9.5 Adding and Subtracting Rational Expressions 4/23/2014.
Chapter P Prerequisites: Fundamental Concepts of Algebra Copyright © 2014, 2010, 2007 Pearson Education, Inc. 1 P.6 Rational Expressions.
Section 6.1 Rational Expressions. OBJECTIVES A Find the numbers that make a rational expression undefined.
Section R5: Rational Expressions
( ) EXAMPLE 3 Standardized Test Practice SOLUTION 5 x = – 9 – 9
EXAMPLE 2 Rationalize denominators of fractions Simplify
Unit 7—Rational Functions Rational Expressions Quotient of 2 polynomials.
Adding, Subtracting, Multiplying, & Dividing Rational Expressions
RATIONAL EXPRESSIONS. EVALUATING RATIONAL EXPRESSIONS Evaluate the rational expression (if possible) for the given values of x: X = 0 X = 1 X = -3 X =
 Inverse Variation Function – A function that can be modeled with the equation y = k/x, also xy = k; where k does not equal zero.
RATIONAL EXPRESSIONS. Definition of a Rational Expression A rational number is defined as the ratio of two integers, where q ≠ 0 Examples of rational.
Simplify a rational expression
Solving Rational Equations On to Section 2.8a. Solving Rational Equations Rational Equation – an equation involving rational expressions or fractions…can.
Warm Up Add or subtract –
Copyright © 2015, 2011, 2007 Pearson Education, Inc. 1 1 Chapter 7 Rational Expressions and Equations.
Operations on Rational Expressions. Rational expressions are fractions in which the numerator and denominator are polynomials and the denominator does.
Chapter 11 Sections 11.1, Rational Expressions.
Chapter 12 Final Exam Review. Section 12.4 “Simplify Rational Expressions” A RATIONAL EXPRESSION is an expression that can be written as a ratio (fraction)
Dear Power point User, This power point will be best viewed as a slideshow. At the top of the page click on slideshow, then click from the beginning.
RATIONAL EXPRESSION REVIEW A rational expression is a fraction in which the numerator or denominator is a variable expression (such as a polynomial). A.
Add or subtract with like denominators
Angel, Elementary and Intermediate Algebra, 3ed 1 Rational Expressions and Equations Chapter 7.
Example 1 Solving Two-Step Equations SOLUTION a. 12x2x + 5 = Write original equation. 112x2x + – = 15 – Subtract 1 from each side. (Subtraction property.
Section 6.4 Rational Equations
Objectives Add and subtract rational expressions.
Please complete the Prerequisite Skills on Page 548 #4-12
1/20/ :24 AM10.3 Multiplying and Dividing Expressions1 Simplify, Multiply and Divide Rational Expressions Section 8-2.
Chapter P Prerequisites: Fundamental Concepts of Algebra Copyright © 2014, 2010, 2007 Pearson Education, Inc. 1 P.6 Rational Expressions.
Rational Expressions Simplifying Rational Expressions.
Chapter 6 Rational Expressions and Equations
Objectives Add and subtract rational expressions.
Section R.6 Rational Expressions.
Chapter 8 Rational Expressions.
1. Add: 5 x2 – 1 + 2x x2 + 5x – 6 ANSWERS 2x2 +7x + 30
EXAMPLE 2 Rationalize denominators of fractions Simplify
Simplify each expression. Assume all variables are nonzero.
8.1 Multiplying and Dividing Rational Expressions
7.1/7.2 – Rational Expressions: Simplifying, Multiplying, and Dividing
CHAPTER R: Basic Concepts of Algebra
( ) EXAMPLE 3 Standardized Test Practice SOLUTION 5 x = – 9 – 9
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
8.5 Add and Subtract Rational Expressions
Rational Expressions and Equations
Multiplying and Dividing Rational Expressions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Rational Expressions and Equations
Without a calculator, simplify the expressions:
Adding and subtracting rational expressions is similar to adding and subtracting fractions. To add or subtract rational expressions with like denominators,
Look for common factors.
Simplifying Rational Expressions
Simplifying Complex Rational Expressions
8.5: Adding and Subtracting Rational Expressions
Rational Expressions and Equations
Adding and Subtracting Rational Expressions
7.4 Adding and Subtracting Rational Expressions
Multiplying and Dividing Rational Expressions
Splash Screen.
Rational Expressions and Equations
A rational expression is a quotient of two polynomials
Do Now Factor completely
Concept 5 Rational expressions.
Dear Power point User, This power point will be best viewed as a slideshow. At the top of the page click on slideshow, then click from the beginning.
Presentation transcript:

6.1 The Fundamental Property of Rational Expressions Rational Expression – has the form: where P and Q are polynomials with Q not equal to zero. Determining when a rational expression is undefined: 1.Set the denominator equal to zero. 2.Solve the resulting equation. 3.The solutions are points where the rational expression is undefined.

6.1 The Fundamental Property of Rational Expressions Lowest terms – A rational expression P/Q is in lowest terms if the greatest common factor of the numerator and the denominator is 1. Fundamental property of rational expressions – If P/Q is a rational expression and if K represents any polynomial where K  0, then:

6.1 The Fundamental Property of Rational Expressions Example: Find where the following rational expression is undefined: 1.Set the denominator equal to zero. 2.Solve: 3.The expression is undefined for:

6.1 The Fundamental Property of Rational Expressions Example: Write the rational expression in lowest terms: 1.Factor: 2.By the fundamental property: 3.The expression is undefined for:

6.2 Multiplying and Dividing Rational Expressions Multiplying Rational Expressions – product of two rational expressions is given by: Dividing Rational Expressions – quotient of two rational expressions is given by:

6.2 Multiplying and Dividing Rational Expressions Multiplying or Dividing Rational Expressions: 1.Factor completely 2.Multiply (multiply by reciprocal for division) 3.Write in lowest terms using the fundamental property

6.2 Multiplying and Dividing Rational Expressions Example - multiply: Factor: Cancel to get in lowest terms:

6.2 Multiplying and Dividing Rational Expressions Example - divide: Factor: Cancel to get in lowest terms:

6.3 Least Common Denominators Finding the least common denominator for rational expressions: 1.Factor each denominator 2.List the factors using the maximum number of times each one occurs 3.Multiply the factors from step 2 to get the least common denominator

6.3 Least Common Denominators Find the LCD for: 1.Factor both denominators 2.The LCD is the product of the largest power of each factor:

6.3 Least Common Denominators Rewrite the expression with the given denominator: 1.Factor both denominators: 2.Multiply top and bottom by (p – 4)

6.4 Adding and Subtracting Rational Expressions Adding Rational Expressions: If and are rational expressions, then Subtracting Rational Expressions: If and are rational expressions, then

6.4 Adding and Subtracting Rational Expressions Adding/Subtracting when the denominators are different rational expressions: 1.Find the LCD 2.Rewrite fractions – multiply top and bottom of each to get the LCD in the denominator 3.Add the numerators (the LCD is the denominator 4.Write in lowest terms

6.4 Adding/Subtracting Rational Expressions Add: 1.Factor denominators to get the LCD: 2.Multiply to get a common denominator: 3.Add and simplify:

6.5 Complex Fractions Complex Fraction – a rational expression with fractions in the numerator, denominator or both To simplify a complex fraction (method 1): 1.Write both the numerator and denominator as a single fraction 2.Change the complex fraction to a division problem 3.Perform the division by multiplying by the reciprocal

6.5 Complex Fractions Example: 1.Write top and bottom as a single fraction 2.Change to division problem 3.Multiply by the reciprocal and simplify

6.5 Complex Fractions To simplify a complex fraction (method 2): 1.Find the LCD of all fractions within the complex fraction 2.Multiply both the numerator and the denominator of the complex fraction by this LCD. Write your answer in lowest terms

6.5 Complex Fractions Example: 1.Find the LCD: the denominators are 4, 8, and x so the LCD is 8x. 2.Multiply top and bottom by this LCD. 3.Simplify:

6.6 Solving Equations Involving Rational Expressions 1.Multiply both sides of the equation by the LCD 2.Solve the resulting equation 3.Check each solution you get – reject any answer that causes a denominator to equal zero.

6.6 Solving Equations Involving Rational Expressions Solve: 1.Factor to get LCD LCD = x(x - 1)(x + 1) 2.Multiply both sides by LCD

6.6 Solving Equations Involving Rational Expressions Example (continued): 3.Solve the equation 4.Check solution

6.7 Applications of Rational Expressions Distance, Rate, and time: Rate of Work - If one job can be completed in t units of time, then the rate of work is:

6.7 Applications of Rational Expressions Example: If the same number is added to the numerator and the denominator of the fraction 2/5, the result is 2/3. What is the number? 1.Equation 2.Multiply by LCD: 3(5+x) 3.Subtract 2x and 6

6.7 Applications of Rational Expressions Example: It takes a mail carrier 6 hr to cover her route. It takes a substitute 8 hr. How long does it take if they work together? 1.Table: 2.Equation: 3.Multiply by LCD: 24 4.Solve: RateTimePart of Job Done Regular1/6xx/6 Substitute1/8xx/8