R&T télescope APC1INFIERI meeting – 15 juillet 2014 DSSD detectors development for a space Compton telescope P. Laurent, Y. Dolgorouky, M. Khalil,

Slides:



Advertisements
Similar presentations
D S Judson UNTF Forum Salford. Outline The Compton imaging process The PORGAMRAYS project What is it? How does it work? Detector description Spectroscopic.
Advertisements

Advanced GAmma Tracking Array
Tomsk Polytechnic University1 A.S. Gogolev A. P. Potylitsyn A.M. Taratin.
May 14, 2015Pavel Řezníček, IPNP Charles University, Prague1 Tests of ATLAS strip detector modules: beam, source, G4 simulations.
Detection of Gamma-Rays and Energetic Particles
Gamma-Ray Astronomy Call no Assoc. Prof. Markus Böttcher Clippinger # 339 Phone:
The Gamma-Ray Large Area Space Telescope: UNDERSTANDING THE MOST POWERFUL ENERGY SOURCES IN THE UNIVERSE Anticoincidence Detector for GLAST Alexander Moiseev,
Towards a Compton Telescope for Gamma-Ray Astronomy in the MeV range CSNSM-Orsay, AIM/CEA-Saclay, APC-Paris, MPE-Garching, NSI-Copenhagen AHEAD meeting,
Terrestrial Gamma-ray Flashes. Gamma Ray Astronomy Beginning started as a small budget research program in 1959 monitoring compliance with the 1963 Partial.
GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS.
What is High-Energy Astrophysics? What is studied by high-energy astrophysicists: Supernovae Supernovae remnants Pulsars/magnetars Gamma-ray bursts Accreting.
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
1 Gamma-Ray Astronomy with GLAST May 24, 2008 Toby Burnett WALTA meeting.
Sept. 18, 2008SLUO 2008 Annual Meeting Detector R&D at KIPAC Hiro Tajima Kavli InStitute of Particle Astrophysics and Cosmology.
Simulations with MEGAlib Jau-Shian Liang Department of Physics, NTHU / SSL, UCB 2007/05/15.
Hiroyasu Tajima Stanford Linear Accelerator Center Nov 3–8, 2002 VERTEX2002, Kailua-Kona, Hawaii Gamma-ray Polarimetry ~ Astrophysics Application ~
On A Large Array Of Midsized Telescopes Stephen Fegan Vladimir Vassiliev UCLA.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
2009/11/12KEK Theory Center Cosmophysics Group Workshop High energy resolution GeV gamma-ray detector Neutralino annihilation GeV S.Osone.
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
NEEP 541 Radiation Interactions Fall 2003 Jake Blanchard.
March 2011Particle and Nuclear Physics,1 Experimental tools accelerators particle interactions with matter detectors.
The Hard X-ray Modulation Telescope Mission
International research project GALA: Monitoring of high energy gamma-ray astrophysical sources.
4. Einstein Angle and Magnification The angular deflection for a relativistic neutrino with mass m ʋ that passes by a compact lens of mass M with impact.
GERMANIUM GAMMA -RAY DETECTORS BY BAYAN YOUSEF JARADAT Phys.641 Nuclear Physics 1 First Semester 2010/2011 PROF. NIDAL ERSHAIDAT.
Introduction to gamma-ray astronomy GLAST-Large Area Telescope Introduction to GLAST Science New way of studying astrophysics Schedule of GLAST project.
CZT Imager for ASTROSAT CONFIGURATION. CZT Module.
Jacques Paul Soft Gamma-Ray Astronomy 23 January 2001 Rencontres de Moriond Les Arcs Expected Impact on VHE Phenomena Panorama in the Coming Years INTEGRAL.
Gamma-Ray Telescopes. Brief History of Gamma Ray Astronomy 1961 EXPLORER-II: First detection of high-energy  -rays from space 1967 VELA satelllites:
Photodetection EDIT Internal photoelectric effect in Si Band gap (T=300K) = 1.12 eV (~1100 nm) More than 1 photoelectron can be created by light in silicon.
11 th iWoRiD, Prague, Czech Republic Low-power Wide-dynamic-range Readout System for a 64-channel Multi-anode PMT of a Scintillation Gamma Camera Satoru.
Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????
Instrumental Development in Japan for Future Missions 1.Si strip detectors(GLAST) 2.Supermirror technology 3.New hard-X/  detectors 4.TES calorimeters.
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
Position sensitive scintillation detectors for the trigger system in the space experiment NUCLEON Supervisors: Anatoliy I. Kalinin a Students: Irina Cioara.
THE GAMMA-400 PROJECT Direct measurements of the primary gamma- radiation in the energy range 30 GeV – 1 TeV GAMMA-400 COLLABORATION: Lebedev Physical.
IDEE, The Electron Spectrometer of the Taranis Mission J.-A. Sauvaud 1, A. Fedorov 1, P. Devoto 1, C. Jacquey 1, L. Prech 2, Z. Nemecek 2, F. Lefeuvre.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
Observational techniques meeting #15
MARCH 11YPM 2015  ray from Galactic Center Tanmoy Mondal SRF PRL Dark Matter ?
MeV Gamma Ray Nuclear Astrophysics Yesterday: Science and Observations
The INFN Italy EXOTIC group Milano, Napoli, Padova, NIPNE Romania, Crakow Poland. Presented by C.Signorini Dept. of Physics and Astronomy Padova (Italy):
Simbol–X workshopMay 14th, 2007 The Simbol-X Detector Payload P. Laurent CEA/Saclay & APC.
HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop January, 2016, Xi’an.
The DAMPE STK G. Ambrosi INFN Perugia. The DAMPE Detector Mass: 1480 Kg Power: 600 W Data: 16 Gbyte/day Liftime: 5 years 2.
High-energy Electron Spectrum From PPB-BETS Experiment In Antarctica Kenji Yoshida 1, Shoji Torii 2 on behalf of the PPB-BETS collaboration 1 Shibaura.
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
PGRIS: Towards portable Compton Camera Imaging
Gamma-ray Large Area Space Telescope -France -Germany -Italy -Japan -Sweden -USA Energy Range 10 keV-300 GeV. GLAST : - An imaging gamma-ray telescope.
Monte Carlo Simulation on Performance of Double–scattering Compton Camera J. H. Park a, H. Seo a, Y. S. Kim a, C. H. Kim a, *, J. H. Lee b, C. S. Lee b,
FP-CCD GLD VERTEX GROUP Presenting by Tadashi Nagamine Tohoku University ILC VTX Ringberg Castle, May 2006.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
MOHAMAD KHALIL APC LABORATORY PARIS 17/06/2013 DSSD and SSD Simulation with Silvaco.
by students Rozhkov G.V. Khalikov E.V. scientific adviser Iyudin A.F.
Development of a Compton Camera for online range monitoring
Gamma-ray Large Area Space Telescope ACD Final Performance
Comparison of GAMMA-400 and Fermi-LAT telescopes
GAMMA-400 performance a,bLeonov A., a,bGalper A., bKheymits M., aSuchkov S., aTopchiev N., bYurkin Y. & bZverev V. aLebedev Physical Institute of the Russian.
WPOL Wide field camera with POLarimetry
On behalf of the GECAM group
Detector R&D in KAPAC Outline Compton Camera SOI detector
Simulation study for Forward Calorimeter in LHC-ALICE experiment
CRaTER Science Requirements
HE instrument and in-orbit performance
Why silicon detectors? Main characteristics of silicon detectors:
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

R&T télescope APC1INFIERI meeting – 15 juillet 2014 DSSD detectors development for a space Compton telescope P. Laurent, Y. Dolgorouky, M. Khalil, W. Bertoli, R. Oger APC

High Energy Astrophysics in a few words … 2INFIERI meeting – 15 juillet 2014R&T télescope APC

Sites where extreme physical conditions prevail: intense gravity An apparently ill-assorted gallery of cosmic sites, but... All sites give way to the fatal attraction of gravity Many sites produce copious outflows of relativistic matter Privileged messengers: gamma-ray photons, neutrinos, cosmic rays, gravitational waves fields, very high temperatures, strong magnetic and electric fields SN 1994dGRB Transient source Host galaxy Messier 871E High Energy astrophysical sites Jacques PaulSlide 3Observables – The Violent Universe – International Winter School – 13 and 14 March 2007 INFIERI meeting – 15 juillet 20143R&T télescope APC

The atmospheric screen Altitude (km) radioVIRUVXgamma Atmospheric transmission reduced by 50% Jacques PaulSlide 4Observables – The Violent Universe – International Winter School – 13 and 14 March 2007 INFIERI meeting – 15 juillet 20144R&T télescope APC

INTEGRAL SpaceGround High Energy telescopes Jacques PaulSlide 5Observables – The Violent Universe – International Winter School – 13 and 14 March MeV 100 keV 10 MeV 100 MeV 1 GeV 10 GeV 100 GeV 1 TeV 10 TeV 100 TeV 1 PeV INFIERI meeting – 15 juillet 20145R&T télescope APC COMPTEL FERMIHESS

MeV range sensitivity gap 100 MeV 100 keV 1 GeV 10 MeV 1 MeV Sensitivity Energy The MeV range suffers from a high sensitivity gap as this is the domain for: Inelastic Compton scattering  minimal cross section of interaction. Nuclear lines  sky observations are polluted by a strong induced background. R&T télescope APCINFIERI meeting – 15 juillet 20146

Telescopes in the MeV range: Compton telescope principles 7INFIERI meeting – 15 juillet 2014R&T télescope APC

A basic Compton telescope features two layer of position sensitive detectors made of diffusive material to scatter the incident gamma ray Layer 1: absorb the scattered photon made of absorbing material toLayer 2: Both incoming photon incidence angle Φ and energy E 0 can be derived from the energy from the angle Ψ of the scattered photon deposits E 1 in layer 1 and E 2 in layer 2 and Telescope axis θ Ψ Φ Jacques PaulSlide 8Observables – The Violent Universe – International Winter School – 13 and 14 March 2007 Compton telescope principles R&T télescope APCINFIERI meeting – 15 juillet 20148

Cones projection simulation done by gamma-ray astronomy SSL (UC Berkeley) 9INFIERI meeting – 15 juillet 2014 Compton telescope principles R&T télescope APC Thus the direction of the incident photon is on a cone of semi-angle  and axis along the scattered photon direction. The intersection of this cone with the celestial sphere is a circle. θ Ψ Φ

PACT Compton telescope short description 10INFIERI meeting – 15 juillet 2014R&T télescope APC

GEANT 4 mass model of the PACT telescope 30 layers of 12 x 12 Si DSSDs = 4320 DSSDs 3 layers of 24 x 24 LaBr3 (CeBr 3 :Sr) detectors Each crystal is 5x5x2 cm 3, coupled to a 3-mm thick SiPM (matrix 8x8) at the bottom Number of electronics channels: (DSSDs) (CeBr 3 ) = Plastic anticoincidence detector Overall instrument size: x x 49.3 cm 3 INFIERI meeting – 15 juillet R&T télescope APC

Summary of PACT Performances Energy resolution (FWHM) 14.0 keV at 1 MeV 33 keV at 5 MeV3.0 MeV at 30 MeV Field of view (deg. HWHM) 65° at 1 MeV63° at 5 MeV 55° at 30 MeV Angular resolution (deg. FWHM) 1.4° at 1 MeV0.9° at 5 MeV8.3° at 30 MeV Effective area (cm 2 ) 1110 at 1 MeV 231 at 5 MeV726 at 30 MeV Narrow line sensitivity γ/s/cm2 (3σ in 10 6 s) 2.7×10 -6 at MeV 1.5×10 -6 at MeV1.4×10 -6 at MeV Continuum sensitivity γ/s/cm2/MeV (3σ in 10 6 s, ΔE = E/2) 9.9×10 -6 at 1 MeV1.6×10 -6 at 5 MeV7.6×10 -8 at 30 MeV INFIERI meeting – 15 juillet R&T télescope APC

On-going R&T programs; DSSD APC 13INFIERI meeting – 15 juillet 2014R&T télescope APC

R&D IPNO BB7 detector (Micron Semiconductor): ● 1.5 mm thickness ● channels Test bench with standard electronic ASIC based solution: → VA32TA7 from IDEAS ● DNR = +/- 72 fC (= 1.6 MeV) ● ENC: 160 e e-/pF → ~ 5 keV ● 64 x 64 mm 2 ● Pitch 2mm 241 Am source Energy 60 keV → 8 keV (FWHM) Energy threshold: ~ 11 keV Ongoing: charge sharing study, temperature study,... Ongoing: ● FEE board design almost finished ● New BB7 detector ordered First tests with BB7 beginning of 2014 INFIERI meeting – 15 juillet R&T télescope APC

Calorimeter developments at CSNSM INFIERI meeting – 15 juillet R&T télescope APC

DSSD development at CEA and APC DSSD development funded by CNES and LabeX UnivEarth. First light with IdefX chain + MUSETT DSSD (from nuclear physics): fall Image with the optimized DSSD from the “MIcron SemiConductor” company : end of junction sideohmic side Active area 10 cm x 10 cm Thickness 1500 µm Pitch width 1500 µm Strip width 600 µm Number of strips 64 Max. Capacitance per strip 20 pF Leakage current (0°C) <1nA Depletion bias <500 V We made in APC DSSD simulations with the Silvaco software in order to determine our detector parameters (see above). This has led to the order of DSSD to the Micron company. They will be delivered in Fall In parallel, we are mounting a test bench using a MUSETT DSSD with the IdefX chain, conceived at CEA (see right). INFIERI meeting – 15 juillet R&T télescope APC

Initiation to High Energy Astrophysics; specificity of the MeV range. Compton telescope principles. Description of the PACT telescope and its performance. GEANT 4 simulations. Silicon stack and DSSDs. 17 Laboratory program INFIERI meeting – 15 juillet 2014R&T télescope APC Presentation of the readout chain with the IdeFX ASIC. Implementation and first light of the DSSD + readout chain.