Ch 3. The Quantum Mechanical Postulates

Slides:



Advertisements
Similar presentations
The Schrödinger Wave Equation 2006 Quantum MechanicsProf. Y. F. Chen The Schrödinger Wave Equation.
Advertisements

Quantum Harmonic Oscillator
Physical Chemistry 2nd Edition
Physical Chemistry 2nd Edition
Quantum One: Lecture 1a Entitled So what is quantum mechanics, anyway?
Quantum One: Lecture 6. The Initial Value Problem for Free Particles, and the Emergence of Fourier Transforms.
The Quantum Mechanics of Simple Systems
Postulates of Quantum Mechanics. The Fundamental Rules of Our Game Any measurement we can make with an experiment corresponds to a mathematical “operator”
Integrals over Operators
Quantum One: Lecture 3. Implications of Schrödinger's Wave Mechanics for Conservative Systems.
The Postulates of Quantum Mechanics
Wavefunction Quantum mechanics acknowledges the wave-particle duality of matter by supposing that, rather than traveling along a definite path, a particle.
QM Reminder. C gsu.edu
Modern Physics 6a – Intro to Quantum Mechanics Physical Systems, Thursday 15 Feb. 2007, EJZ Plan for our last four weeks: week 6 (today), Ch.6.1-3: Schrödinger.
Chapter06 Quantum Mechanics II General Bibliography 1) Various wikipedia, as specified 2) Thornton-Rex, Modern Physics for Scientists & Eng, as indicated.
Atkins’ Physical Chemistry Eighth Edition Chapter 8 Quantum Theory: Introduction and Principles Copyright © 2006 by Peter Atkins and Julio de Paula Peter.
Chapter 3 Formalism. Hilbert Space Two kinds of mathematical constructs - wavefunctions (representing the system) - operators (representing observables)
4. The Postulates of Quantum Mechanics 4A. Revisiting Representations
Quantum One: Lecture 2. Postulates of Schrödinger's Wave Mechanics.
Ch 9 pages ; Lecture 21 – Schrodinger’s equation.
PHYS 3313 – Section 001 Lecture #17
Physics 3 for Electrical Engineering
Physical Chemistry 2nd Edition
Lecture 2. Postulates in Quantum Mechanics Engel, Ch. 2-3 Ratner & Schatz, Ch. 2 Molecular Quantum Mechanics, Atkins & Friedman (4 th ed. 2005), Ch. 1.
Quantum Mechanics (14/2) CH. Jeong 1. Bloch theorem The wavefunction in a (one-dimensional) crystal can be written in the form subject to the condition.
Lecture 2. Postulates in Quantum Mechanics
Ch 3 Quantum Mechanics of Electrons EE 315/ECE 451 N ANOELECTRONICS I.
Postulates of Quantum Mechanics: The development of quantum mechanics depended on equations that are not, in the normal sense, derivable. This development.
1 The Mathematics of Quantum Mechanics 2. Unitary and Hermitian Operators.
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 18 A Quantum Mechanical Model for the Vibration and Rotation of Molecules.
(1) Experimental evidence shows the particles of microscopic systems moves according to the laws of wave motion, and not according to the Newton laws of.
Wednesday, Oct. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #13 Wednesday, Oct. 17, 2012 Dr. Jaehoon Yu Properties.
Ch 2. The Schrödinger Equation (S.E)
MODULE 1 In classical mechanics we define a STATE as “The specification of the position and velocity of all the particles present, at some time, and the.
The Quantum Theory of Atoms and Molecules The Schrödinger equation and how to use wavefunctions Dr Grant Ritchie.
Ch 4. Using Quantum Mechanics on Simple Systems
Chapters Q6 and Q7 The Wavefunction and Bound Systems.
Modern Physics (II) Chapter 9: Atomic Structure
MS310 Quantum Physical Chemistry
MS310 Quantum Physical Chemistry
Quantum Chemistry: Our Agenda Birth of quantum mechanics (Ch. 1) Postulates in quantum mechanics (Ch. 3) Schrödinger equation (Ch. 2) Simple examples of.
1 MODELING MATTER AT NANOSCALES 4. Introduction to quantum treatments Outline of the principles and the method of quantum mechanics.
5. Quantum Theory 5.0. Wave Mechanics
MS310 Quantum Physical Chemistry
Chapter 5: Quantum Mechanics
Physics Lecture 11 3/2/ Andrew Brandt Monday March 2, 2009 Dr. Andrew Brandt 1.Quantum Mechanics 2.Schrodinger’s Equation 3.Wave Function.
Quantum Chemistry: Our Agenda Postulates in quantum mechanics (Ch. 3) Schrödinger equation (Ch. 2) Simple examples of V(r) Particle in a box (Ch. 4-5)
Wednesday, April 1, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, April 1, 2015 Dr. Jaehoon Yu Probability.
Chapter 3 Postulates of Quantum Mechanics. Questions QM answers 1) How is the state of a system described mathematically? (In CM – via generalized coordinates.
An equation for matter waves Seem to need an equation that involves the first derivative in time, but the second derivative in space As before try solution.
1 HEINSENBERG’S UNCERTAINTY PRINCIPLE “It is impossible to determine both position and momentum of a particle simultaneously and accurately. The product.
Review for Exam 2 The Schrodinger Eqn.
The Quantum Theory of Atoms and Molecules
Measurement and Expectation Values
Schrodinger wave equation
UNIT 1 Quantum Mechanics.
Concept test 15.1 Suppose at time
CHAPTER 5 The Schrodinger Eqn.
PHYS 3313 – Section 001 Lecture #18
Schrodinger Equation The equation describing the evolution of Ψ(x,t) is the Schrodinger equation Given suitable initial conditions (Ψ(x,0)) Schrodinger’s.
The Postulates and General Principles
Elements of Quantum Mechanics
Concept test 15.1 Suppose at time
Quantum One. Quantum One So what is quantum mechanics, anyway?
Quantum One.
Double Slit Experiment
Quantum One.
The Stale of a System Is Completely Specified by lts Wave Function
Shrödinger Equation.
PHYS 3313 – Section 001 Lecture #17
Presentation transcript:

Ch 3. The Quantum Mechanical Postulates - Summarized the rules for how information is obtained from wave functions in a few postulates - Comparison of postulated results from quantum mechanics with those obtained from classical mechanics MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry Basic concepts of Q.M : Postulates 1) What is postulates? framework of Q.M 2) How many postulates in Q.M? 6 postulates No exception of these postulates until now. In this chapter, we explain the 5 postulates. In chapter 10, 6th postulate is introduced. MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry 3.1 Physical meaning of wave function Postulate 1 : The state of a quantum mechanical system is completely specified by a wave function Ψ(x,t). The probability that a particle will be found at time t0 in a spatial interval of width dx centered at x0 is given by Ψ*(x0,t0)Ψ(x0,t0)dx. Meaning of wave function Ψ(x0,t0) in classical waves sound wave : pressure at (x0,t0) water wave : height of water at (x0,t0) What is the meaning of Ψ(x0,t0) by Schrödinger equation? → probability of finding a particle(also has a wave character) at position x0 , time t0 within an interval dx. MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry Unlike the classical wave, amplitude of Ψ(x0,t0) has no physical meaning in Q.M. Why? → probability P α square of the magnitude of Ψ(x0,t0) Ψ(x0,t0) : complex function → can multiply -1 or change the phase by multiplying the complex number eiθ (θ : phase angle) However, take the square, Ψ*(x0,t0)Ψ(x0,t0), these effects are cancelled. Therefore, all wave functions with a different phase angle generate the same observable. MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry Ψ*(x0,t0)Ψ(x0,t0) : probability → sum of probability over whole interval must be 1 : normalization Therefore, Ψ*(x0,t0)Ψ(x0,t0) must satisfy the following conditions. 1) single-valued function(only one probability at each point) 2) 1st derivative exists and continuous(2nd derivative exist and well-behaved) 3) no infinite amplitude over a finite interval(wave function must be normalized) MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry Example of double-valued function and single-valued function Continuous and discontinuous function MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry 3.2 Every observable has a corresponding operator Postulate 2 : For every measurable property of the system in C.M such as position, momentum, and energy, there exists a corresponding operator in Q.M. An experiment in the lab to measure a value for such an observable is simulated in the theory by operating on the wave function of the system with the corresponding operator. All Q.M operator : Hermitian operator(real eigenvalue) Order of operation is important MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry 3.3 The result of individual measurement Postulate 3: In any single measurement of the observable that corresponds to the operator Â, the only values that will ever be measured are the eigenvalues of that operator. Ex) Hydrogen atom Measured energies in experiment : only eigenvalues of the time-independent Schrödinger equation This make senses because the energy levels of the hydrogen atom is discrete and only those energies are allowed. MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry 3.4 The expectation value Postulate 4 : If the system is in a state described by the wave function Ψ(x,t), and the value of the observable a is measured once each on many identically prepared systems, the average value(also called expectation value) of all of those measurement is given by If Ψ(x,t) is normalized, denominator is 1. There are two cases 1) Ψ(x,t) is a normalized eigenfunction of  2) Ψ(x,t) is not a normalized eigenfunction of  MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry 1) Ψ(x,t) is a normalized eigenfunction of Â, φj(x,t) All measurements will give the same answer, aj 2) Ψ(x,t) is not a eigenfunction of  Ψ(x,t) is normalized → ∑bm* bm = ∑ | bm |2 = 1 MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry Use eigenfunctions of  form an orthonormal set bm : expansion coefficient of the wave function <a> : weighted average | bm |2 : contribution of each eigenfunction to the wave function Ψ(x,t) No way of knowing the outcome of individual measurement and <a> is only average value. What happened in this case? → superposition state MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry Superposition state : wave function has characters of ‘more than 2 states’ In this case, electron has a 1s, 2s, 2p, 3s character all and probability of each state after measurement is b12, b22, b32 and b42. → probabilistic outcome Meaning of measurement process : collapse before the measurement : superposition state after the measurement : one state, the measured eigenvalue MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry φ1(x), φ2(x), φ3(x) : eigenfunctions of  each eigenvalue : a1, 4a1, 9a1 Result of individual result : regardless of state(only a1, 4a1, 9a1 in this case) Probability of each eigenvalue : depends on state(related to square of each coefficient) MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry measurement process in quantum mechanics: probabilistic ----> deterministic The act of carrying out a quantum mechanical measurement appears to convert the wave function of a system to the eigen-function of the operator corresponding to the measured quantity!! MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry 3.5 The evolution in time of a Quantum Mechanical system Postulate 5 : The evolution in time of a quantum mechanical system is governed by the time-dependent Schrödinger equation : Meaning of this postulate : variation of wave function as time.(can predict the time variation of wave function – state) However, postulate 4 and 5 is not contradictory. Why? If we measure the system at t0, and no more measurement after t0, wave function follows the postulate 5 at t1> t0. However, if we measure the system at t1 > t0, wave function follows the postulate 4 after t1. MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry If system is time-independent, wave function is given by In this case, we can solve the eigenvalue equation for time-independent operator Â. MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry Summary Quantum mechanics can be formulated in terms of six postulates provided a convenient framework for summarizing the basic concepts of quantum mechanics. The state of a quantum mechanical system is completely specified by a wave function Ψ(x,t). The probability that a particle will be found at time t0 in a spatial interval of width dx centered at x0 is given by Ψ*(x0,t0)Ψ(x0,t0)dx. For every measurable property of the system in C.M such as position, momentum, and energy, there exists a corresponding operator in Q.M. An experiment in the lab to measure a value for such an observable is simulated in the theory by operating on the wave function of the system with the corresponding operator. MS310 Quantum Physical Chemistry

MS310 Quantum Physical Chemistry Summary In any single measurement of the observable that corresponds to the operator Â, the only values that will ever be measured are the eigenvalues of that operator. If the system is in a state described by the wave function Ψ(x,t), and the value of the observable a is measured once each on many identically prepared systems, the average value(also called expectation value) of all of those measurement is given by The evolution in time of a quantum mechanical system is governed by the time-dependent Schrödinger equation : MS310 Quantum Physical Chemistry