Objective Use the angles formed by a transversal to prove two lines are parallel.

Slides:



Advertisements
Similar presentations
Proving Lines Parallel
Advertisements

12. Conv. of corr. s post. 14. Both angles = 124°, Conv. of corr
CONFIDENTIAL 1 Geometry Proving Lines Parallel. CONFIDENTIAL 2 Warm Up Identify each of the following: 1) One pair of parallel segments 2) One pair of.
Angles Formed by Parallel Lines and Transversals
Angles Formed by Parallel Lines and Transversals 3-2
Use Parallel Lines and Transversals 3-2
Holt McDougal Geometry 3-3 Proving Lines Parallel Bellringer State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°,
Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°, then A and B are complementary. 3. If AB + BC =
Proving Lines Parallel (3-3)
Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If m  A + m  B = 90°, then  A and  B are complementary. 3. If AB.
Proving Lines Parallel 3.4. Use the angles formed by a transversal to prove two lines are parallel. Objective.
Holt Geometry 3-3 Proving Lines Parallel Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5 4. 6 and 7 same-side int s corr. s.
Holt McDougal Geometry 3-3 Proving Lines Parallel 3-3 Proving Lines Parallel Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
3-3 PROVING LINES PARALLEL CHAPTER 3. SAT PROBLEM OF THE DAY.
Proving Lines Parallel
Holt McDougal Geometry 3-1 Lines and Angles Warm Up Identify each of the following. 1. points that lie in the same plane 2.two angles whose sum is 180°
Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5
3-3 Parallel Lines and Transversals Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Ch. 3.3 I can prove lines are parallel Success Criteria:  Identify parallel lines  Determine whether lines are parallel  Write proof Today’s Agenda.
Proving lines parallel Chapter 3 Section 5. converse corresponding angles postulate If two lines are cut by a transversal so that corresponding angles.
Holt McDougal Geometry 3-3 Proving Lines Parallel Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°,
Proving Lines Parallel
Proving Lines Parallel Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°, then A and B are complementary.
PARALLEL LINES CUT BY A TRANSVERSAL. Holt McDougal Geometry Angles Formed by Parallel Lines and Transversals.
3.3 Proving Lines Parallel Converse of the Corresponding Angles Postulate –If two lines and a transversal form corresponding angles that are congruent,
3-3 Proving Lines Parallel
Example 2: Classifying Pairs of Angles
3-5 Using Properties of Parallel Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 3-3 Proving Lines Parallel 3-3 Proving Lines Parallel Holt Geometry.
Ch 3.1 Standard 2.0: Students write geometric proofs. Standard 4.0: Students prove basic theorems involving congruence. Standard 7.0: Students prove and.
Holt Geometry 3-2 Angles Formed by Parallel Lines and Transversals 3-2 Angles Formed by Parallel Lines and Transversals Holt Geometry Warm Up Warm Up Lesson.
WARM UP Find the angle measurement: 1. m JKL 127° L x° K  J m JKL = 127.
3-4 Proving Lines Parallel Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 3-3 Proving Lines Parallel 3-3 Proving Lines Parallel Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Proving Lines Parallel
Flowchart and Paragraph Proofs
Proving Lines are Parallel
3.3 Proving Lines are Parallel
Warm Up State the converse of each statement.
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Proving Lines Parallel
Warm Up State the converse of each statement.
Drill: Wednesday, 11/9 State the converse of each statement.
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Are Parallel
Day 7 (2/20/18) Math 132 CCBC Dundalk.
Proving Lines Parallel
Objective Use the angles formed by a transversal to prove two lines are parallel.
Module 14: Lesson 3 Proving Lines are Parallel
Objective Use the angles formed by a transversal to prove two lines are parallel.
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Examples.
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Objective Use the angles formed by a transversal to prove two lines are parallel.
Lesson 3 – 5 Proving Lines Parallel
Presentation transcript:

Objective Use the angles formed by a transversal to prove two lines are parallel.

Post. If corres.<s  lines ||.

Example 1: Using the Converse of the Corresponding Angles Postulate Use the Converse of the Corresponding Angles Postulate and the given information to show that ℓ || m. 4  8 4  8 4 and 8 are corresponding angles. ℓ || m Conv. of Corr. s Post.

The Converse of the Corresponding Angles Postulate is used to construct parallel lines. The Parallel Postulate guarantees that for any line l you can always construct a parallel line through a point that is not on l

If alt.int.<s  lines || If alt.ext.<s  If SS int.<s 

Example 2a: Determining Whether Lines are Parallel Use the given information and the theorems you have learned to show that r || s. 4  8 4  8 4 and 8 are alternate exterior angles. r || s Conv. Of Alt. Int. s Thm.

Example 2B Continued Use the given information and the theorems you have learned to show that r || s. m2 = (10x + 8)°, m3 = (25x – 3)°, x = 5 m2 + m3 = 58° + 122° = 180° 2 and 3 are same-side interior angles. r || s Conv. of Same-Side Int. s Thm.

Example 3: Proving Lines Parallel Given: p || r , 1  3 Prove: l || m

Example 3 Continued Statements Reasons 1. p || r 1. Given 2. 3  2 2. Alt. Ext. s Thm. 3. 1  3 3. Given 4. 1  2 4. Trans. Prop. of  5. L ||m 5. Conv. of Corr. s Post.

Lesson Quiz: Part I Name the postulate or theorem that proves p || r. 1. 4  5 Conv. of Alt. Int. s Thm. 2. 2  7 Conv. of Alt. Ext. s Thm. 3. 3  7 Conv. of Corr. s Post. 4. 3 and 5 are supplementary. Conv. of Same-Side Int. s Thm.

Lesson Quiz: Part II Use the theorems and given information to prove p || r. 5. m2 = (5x + 20)°, m 7 = (7x + 8)°, and x = 6 m2 = 5(6) + 20 = 50° m7 = 7(6) + 8 = 50° m2 = m7, so 2 ≅ 7 p || r by the Conv. of Alt. Ext. s Thm.