Ch. 14 – Probabilistic Reasoning Supplemental slides for CSE 327 Prof. Jeff Heflin
Conditional Independence if effects E 1,E 2,…,E n are conditionally independent given cause C can be used to factor joint distributions P(Weather,Cavity,Toothache,Catch) = P(Weather)P(Cavity,Toothache,Catch) = P(Weather)P(Cavity)P(Toothache|Cavity)P(Catch|Cavity)
Bayes Net Example P(M|A) 0.70 A T F0.01 P(J|A) 0.90 A T F0.05 P(B) Burglary Earthquake Alarm JohnCalls MaryCalls P(E) P(A|B,E) 0.95 E T F B T T T F0.001 F F From Fig. 14.2, p. 512
Global Semantics atomic event using a Bayesian Network atomic event using the chain rule P(b, e,a, j, m) = P(b)P( e|b)P(a|b, e)P(j| b, e,a)P( m| b, e,a,j) P(b, e,a, j, m) = P(b)P( e)P(a|b, e)P(j|a)P( m|a)
Bayes Net Inference P(b|j, m)=αP(b)[P(e)[P(a|b,e)P(j|a)P( m|a) + P( a|b,e)P(j| a)P( m| a)] + P( e)[P(a|b, e)P(j|a)P( m|a) + P( a|b, e)P(j| a)P( m| a)] Formula: Example:
Tree of Inference Calculations + ++ P(b)=.001 P(e)=.002 P( e)=.998 P(a|b,e)=.95 P( a|b,e)=.05P(a|b, e)=.94P( a|b, e)=.06 P(j|a)=.90 P( m|a)=.30 P(j| a)=.05 P( m| a)=.99 P(j|a)=.90 P( m|a)=.30 P(j| a)=.05 P( m| a)=.99
Calculating P(b|j, m) and P( b|j, m) P(b|j, m)=αP(b)[P(e)[P(a|b,e)P(j|a)P( m|a) + P( a|b,e)P(j| a)P( m| a)] + P( e)[P(a|b, e)P(j|a)P( m|a) + P( a|b, e)P(j| a)P( m| a)]] = α(0.001)[(0.002)[(0.95)(0.9)(0.3) + (0.05)(0.05)(0.99)] + (0.998)[(0.94)(0.9)(0.3) + (0.06)(0.05)(0.99)]] = α(0.001)[(0.002)[ ] + (0.998)[ ]] = α(0.001)[(0.002)( ) + (0.998)( )] = α(0.001)[ ] = α(0.001)( ) = α( ) P( b|j, m)=αP( b)[P(e)[P(a| b,e)P(j|a)P( m|a) + P( a| b,e)P(j| a)P( m| a)] + P( e)[P(a| b, e)P(j|a)P( m|a) + P( a| b, e)P(j| a)P( m| a)]] = α(0.999)[(0.002)[(0.29)(0.9)(0.3) + (0.71)(0.05)(0.99)] + (0.998)[(0.001)(0.9)(0.3) + (0.999)(0.05)(0.99)]] = α(0.999)[(0.002)[ ] + (0.998)[ ]] = α(0.999)[(0.002)( ) + (0.998)( )] = α(0.999)[ ] = α(0.999)( ) = α( )
Normalizing the Answer P(b|j, m) = α( ) P( b|j, m) = α( ) α = 1 / ( ) α = 1 / α P(b|j, m) ( )( ) P( b|j, m) ( ) ( ) P(B|j, m) =