商業智慧實務 Practices of Business Intelligence 1 1032BI06 MI4 Wed, 9,10 (16:10-18:00) (B130) 資料科學與巨量資料分析 (Data Science and Big Data Analytics) Min-Yuh Day 戴敏育.

Slides:



Advertisements
Similar presentations
Social Media Marketing Research 社會媒體行銷研究 SMMR08 TMIXM1A Thu 7,8 (14:10-16:00) L511 Exploratory Factor Analysis Min-Yuh Day 戴敏育 Assistant Professor.
Advertisements

Case Study for Information Management 資訊管理個案
Social Media Marketing Analytics 社群網路行銷分析 SMMA02 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 社群網路行銷分析 (Social Media Marketing Analytics) Min-Yuh.
1 st Year2 nd Year3 rd Year4 th Year FallSpringFallSpringFallSpringFallSpring 資料庫實務 (Database Practices) 資料庫系統 (Database System) 人工智慧 (Artificial Intelligence)
商業智慧實務 Practices of Business Intelligence BI04 MI4 Wed, 9,10 (16:10-18:00) (B113) 資料倉儲 (Data Warehousing) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
商業智慧實務 Practices of Business Intelligence
Case Study for Information Management 資訊管理個案
Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Business Intelligence 商業智慧 BI01 IM EMBA Fri 12,13,14 (19:20-22:10) D502 Introduction to Business Intelligence 商業智慧導論 Min-Yuh Day 戴敏育 Assistant Professor.
商業智慧 Business Intelligence
Special Topics in Social Media Services 社會媒體服務專題 1 992SMS02 TMIXJ1A Sat. 6,7,8 (13:10-16:00) D502 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information.
Case Study for Information Management 資訊管理個案 CSIM4B06 TLMXB4B (M1824) Tue 2, 3, 4 (9:10-12:00) B502 Foundations of Business Intelligence - Database.
Social Media Marketing Research 社會媒體行銷研究 SMMR06 TMIXM1A Thu 7,8 (14:10-16:00) L511 Measuring the Construct Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
社會媒體服務專題 Special Topics in Social Media Services 淡江大學 淡江大學 資訊管理學系 資訊管理學系 Dept. of Information ManagementDept. of Information Management, Tamkang UniversityTamkang.
商業智慧實務 Practices of Business Intelligence
Web Mining ( 網路探勘 ) WM12 TLMXM1A Wed 8,9 (15:10-17:00) U705 Web Usage Mining ( 網路使用挖掘 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information.
商業智慧實務 Practices of Business Intelligence BI03 MI4 Wed, 9,10 (16:10-18:00) (B113) 企業績效管理 (Business Performance Management) Min-Yuh Day 戴敏育 Assistant.
Business Intelligence Trends 商業智慧趨勢 BIT08 MIS MBA Mon 6, 7 (13:10-15:00) Q407 商業智慧導入與趨勢 (Business Intelligence Implementation and Trends) Min-Yuh.
Social Media Management 社會媒體管理 SMM06 TMIXM1A Fri. 7,8 (14:10-16:00) L215 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Social Media Management 社會媒體管理 SMM01 TMIXM1A Fri. 7,8 (14:10-16:00) L215 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Case Study for Information Management 資訊管理個案 CSIM4B07 TLMXB4B (M1824) Tue 2, 3, 4 (9:10-12:00) B502 Telecommunications, the Internet, and Wireless.
Social Media Marketing 社群網路行銷 SMM08 TLMXJ1A (MIS EMBA) Mon 12,13,14 (19:20-22:10) D504 社群網路行銷計劃 (Social Media Marketing Plan) Min-Yuh Day 戴敏育 Assistant.
Special Topics in Social Media Services 社會媒體服務專題 1 992SMS07 TMIXJ1A Sat. 6,7,8 (13:10-16:00) D502 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information.
Data Mining 資料探勘 Introduction to Data Mining 資料探勘導論 Min-Yuh Day 戴敏育
Social Media Marketing Management 社會媒體行銷管理 SMMM07 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 社群網路行為研究 (Behavior Research on Social Media) Min-Yuh Day.
商業智慧實務 Practices of Business Intelligence BI07 MI4 Wed, 9,10 (16:10-18:00) (B113) 文字探勘與網路探勘 (Text and Web Mining) Min-Yuh Day 戴敏育 Assistant Professor.
商業智慧實務 Practices of Business Intelligence BI01 MI4 Wed, 9,10 (16:10-18:00) (B113) 商業智慧導論 (Introduction to Business Intelligence) Min-Yuh Day 戴敏育.
Social Media Marketing Management 社會媒體行銷管理 SMMM12 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 確認性因素分析 (Confirmatory Factor Analysis) Min-Yuh Day 戴敏育.
Social Media Marketing Analytics 社群網路行銷分析 SMMA04 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 測量構念 (Measuring the Construct) Min-Yuh Day 戴敏育.
Social Media Marketing Research 社會媒體行銷研究 SMMR02 TMIXM1A Thu 7,8 (14:10-16:00) U505 Social Media: Facebook, Youtube, Blog, Microblog Min-Yuh Day 戴敏育.
Social Media Management 社會媒體管理 SMM02 TMIXM1A Fri. 7,8 (14:10-16:00) L215 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Social Media Marketing Research 社會媒體行銷研究 SMMR09 TMIXM1A Thu 7,8 (14:10-16:00) L511 Confirmatory Factor Analysis Min-Yuh Day 戴敏育 Assistant Professor.
Data Mining 資料探勘 DM04 MI4 Thu 9, 10 (16:10-18:00) B216 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Case Study for Information Management 資訊管理個案 CSIM4C12 TLMXB4C Mon 8, 9, 10 (15:10-18:00) B602 Enhancing Decision Making: CompStat (Chap. 12) Min-Yuh.
Case Study for Information Management 資訊管理個案 CSIM4B08 TLMXB4B Thu 8, 9, 10 (15:10-18:00) B508 Securing Information System: 1. Facebook, 2. European.
Case Study for Information Management 資訊管理個案 CSIM4B03 TLMXB4B (M1824) Tue 3,4 (10:10-12:00) L212 Thu 9 (16:10-17:00) B601 Global E-Business and Collaboration:
Case Study for Information Management 資訊管理個案
商業智慧實務 Practices of Business Intelligence BI01 MI4 Wed, 9,10 (16:10-18:00) (B130) 商業智慧導論 (Introduction to Business Intelligence) Min-Yuh Day 戴敏育.
商業智慧 Business Intelligence BI03 IM EMBA Fri 12,13,14 (19:20-22:10) D502 企業績效管理 (Business Performance Management) Min-Yuh Day 戴敏育 Assistant Professor.
Social Media Marketing 社群網路行銷 SMM02 TLMXJ1A (MIS EMBA) Mon 12,13,14 (19:20-22:10) D504 社群網路商業模式 (Business Models of Social Media) Min-Yuh Day 戴敏育.
商業智慧實務 Practices of Business Intelligence
Business Intelligence Trends 商業智慧趨勢 BIT01 MIS MBA Mon 6, 7 (13:10-15:00) Q407 Course Orientation for Business Intelligence Trends 商業智慧趨勢課程介紹 Min-Yuh.
Data Mining 資料探勘 DM04 MI4 Wed, 6,7 (13:10-15:00) (B216) 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Social Media Marketing Management 社會媒體行銷管理 SMMM01 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 Course Orientation of Social Media Marketing Management.
Web Mining ( 網路探勘 ) WM06 TLMXM1A Wed 8,9 (15:10-17:00) U705 Information Retrieval and Web Search ( 資訊檢索與網路搜尋 ) Min-Yuh Day 戴敏育 Assistant Professor.
商業智慧 Business Intelligence BI08 IM EMBA Fri 12,13,14 (19:20-22:10) D502 社會網路分析 (Social Network Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
Social Media Marketing Research 社會媒體行銷研究 SMMR04 TMIXM1A Thu 7,8 (14:10-16:00) L511 Marketing Research Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
Data Mining 資料探勘 DM01 MI4 Wed, 6,7 (13:10-15:00) (B216) Introduction to Data Mining ( 資料探勘導論 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of.
Data Mining 資料探勘 Introduction to Data Mining (資料探勘導論) Min-Yuh Day 戴敏育
Case Study for Information Management 資訊管理個案
商業智慧實務 Practices of Business Intelligence BI09 MI4 Wed, 9,10 (16:10-18:00) (B113) 社會網路分析 (Social Network Analysis) Min-Yuh Day 戴敏育 Assistant Professor.
商業智慧 Business Intelligence BI04 IM EMBA Fri 12,13,14 (19:20-22:10) D502 資料倉儲 (Data Warehousing) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept.
Big Data Mining 巨量資料探勘 DM01 MI4 (M2244) (3094) Tue, 3, 4 (10:10-12:00) (B216) Course Orientation for Big Data Mining ( 巨量資料探勘課程介紹 ) Min-Yuh Day 戴敏育.
Social Computing and Big Data Analytics 社群運算與大數據分析
巨量資料基礎: MapReduce典範、Hadoop與Spark生態系統
Social Computing and Big Data Analytics 社群運算與大數據分析
Social Computing and Big Data Analytics 社群運算與大數據分析 SCBDA02 MIS MBA (M2226) (8628) Wed, 8,9, (15:10-17:00) (Q201) Data Science and Big Data Analytics:
Social Computing and Big Data Analytics 社群運算與大數據分析
Social Computing and Big Data Analytics 社群運算與大數據分析
Big Data Mining 巨量資料探勘 DM05 MI4 (M2244) (3094) Tue, 3, 4 (10:10-12:00) (B216) 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
大數據行銷研究 Big Data Marketing Research
Case Study for Information Management 資訊管理個案
SAS users meeting in Halifax
分群分析 (Cluster Analysis)
Business Intelligence Trends 商業智慧趨勢
商業智慧實務 Practices of Business Intelligence
Case Study for Information Management 資訊管理個案
Big DATA.
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
Presentation transcript:

商業智慧實務 Practices of Business Intelligence BI06 MI4 Wed, 9,10 (16:10-18:00) (B130) 資料科學與巨量資料分析 (Data Science and Big Data Analytics) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang University 淡江大學 淡江大學 資訊管理學系 資訊管理學系 tku.edu.tw/myday/ Tamkang University

週次 (Week) 日期 (Date) 內容 (Subject/Topics) /02/25 商業智慧導論 (Introduction to Business Intelligence) /03/04 管理決策支援系統與商業智慧 (Management Decision Support System and Business Intelligence) /03/11 企業績效管理 (Business Performance Management) /03/18 資料倉儲 (Data Warehousing) /03/25 商業智慧的資料探勘 (Data Mining for Business Intelligence) /04/01 教學行政觀摩日 (Off-campus study) /04/08 商業智慧的資料探勘 (Data Mining for Business Intelligence) /04/15 資料科學與巨量資料分析 (Data Science and Big Data Analytics) 課程大綱 ( Syllabus) 2

週次 日期 內容( Subject/Topics ) /04/22 期中報告 (Midterm Project Presentation) /04/29 期中考試週 (Midterm Exam) /05/06 文字探勘與網路探勘 (Text and Web Mining) /05/13 意見探勘與情感分析 (Opinion Mining and Sentiment Analysis) /05/20 社會網路分析 (Social Network Analysis) /05/27 期末報告 (Final Project Presentation) /06/03 畢業考試週 (Final Exam) 課程大綱 ( Syllabus) 3

Business Intelligence Data Mining, Data Warehouses Increasing potential to support business decisions End User Business Analyst Data Analyst DBA Decision Making Data Presentation Visualization Techniques Data Mining Information Discovery Data Exploration Statistical Summary, Querying, and Reporting Data Preprocessing/Integration, Data Warehouses Data Sources Paper, Files, Web documents, Scientific experiments, Database Systems 4 Source: Han & Kamber (2006)

Data Mining at the Intersection of Many Disciplines Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 5

Outline Business Intelligence Implementation Business Intelligence Trends Data Science Big Data Analytics – Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses 6

7 Business Intelligence Implementation

Business Intelligence Implementation CSFs Framework for Implementation of BI Systems 8 Yeoh, W., & Koronios, A. (2010). Critical success factors for business intelligence systems. Journal of computer information systems, 50(3), 23.

Critical Success Factors of Business Intelligence Implementation Organizational dimension – Committed management support and sponsorship – Clear vision and well-established business case Process dimension – Business-centric championship and balanced team composition – Business-driven and iterative development approach – User-oriented change management. Technological dimension – Business-driven, scalable and flexible technical framework – Sustainable data quality and integrity 9 Yeoh, W., & Koronios, A. (2010). Critical success factors for business intelligence systems. Journal of computer information systems, 50(3), 23.

Business Intelligence Trends 10

Business Intelligence Trends 1.Agile Information Management (IM) 2.Cloud Business Intelligence (BI) 3.Mobile Business Intelligence (BI) 4.Analytics 5.Big Data 11 Source:

Business Intelligence Trends: Computing and Service Cloud Computing and Service Mobile Computing and Service Social Computing and Service 12

Business Intelligence and Analytics Business Intelligence 2.0 (BI 2.0) – Web Intelligence – Web Analytics – Web 2.0 – Social Networking and Microblogging sites Data Trends – Big Data Platform Technology Trends – Cloud computing platform 13 Source: Lim, E. P., Chen, H., & Chen, G. (2013). Business Intelligence and Analytics: Research Directions. ACM Transactions on Management Information Systems (TMIS), 3(4), 17

Business Intelligence and Analytics: Research Directions 1. Big Data Analytics – Data analytics using Hadoop / MapReduce framework 2. Text Analytics – From Information Extraction to Question Answering – From Sentiment Analysis to Opinion Mining 3. Network Analysis – Link mining – Community Detection – Social Recommendation 14 Source: Lim, E. P., Chen, H., & Chen, G. (2013). Business Intelligence and Analytics: Research Directions. ACM Transactions on Management Information Systems (TMIS), 3(4), 17

Data Science 15

“ Data science is the study of the generalizable extraction of knowledge from data ” 16 Source: Dhar, V. (2013). Data science and prediction. Communications of the ACM, 56(12),

Data Science A common epistemic requirement in assessing whether new knowledge is actionable for decision making is its predictive power, not just its ability to explain the past. 17 Source: Dhar, V. (2013). Data science and prediction. Communications of the ACM, 56(12),

Data Scientist A data scientist requires an integrated skill set spanning mathematics, machine learning, artificial intelligence, statistics, databases, and optimization, along with a deep understanding of the craft of problem formulation to engineer effective solutions. 18 Source: Dhar, V. (2013). Data science and prediction. Communications of the ACM, 56(12),

Data Scientist : The Sexiest Job of the 21st Century (Davenport & Patil, 2012)(HBR) 19 Source: Davenport, T. H., & Patil, D. J. (2012). Data Scientist. Harvard business review

20 Source: Davenport, T. H., & Patil, D. J. (2012). Data Scientist. Harvard business review

Data Scientist 21 Source:

Data Science and its Relationship to Big Data and Data-Driven Decision Making 22 Source: Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1),

23 Source: Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1), Data science in the organization

Big Data Analytics 24

Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses 25

26 Source: McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution.Harvard business review. Big Data: The Management Revolution

27 Source: McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution.Harvard business review.

28 Source:

Business Intelligence and Enterprise Analytics Predictive analytics Data mining Business analytics Web analytics Big-data analytics 29 Source: Thomas H. Davenport, "Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data", FT Press, 2012

Three Types of Business Analytics Prescriptive Analytics Predictive Analytics Descriptive Analytics 30 Source: Thomas H. Davenport, "Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data", FT Press, 2012

Three Types of Business Analytics 31 Source: Thomas H. Davenport, "Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data", FT Press, 2012 Optimization Statistical Modeling Randomized Testing Predictive Modeling / Forecasting Alerts Query / Drill Down Ad hoc Reports / Scorecards Standard Report “What’s the best that can happen?” “What if we try this?” “What will happen next?” “Why is this happening?” “What actions are needed?” “What exactly is the problem?” “How many, how often, where?” “What happened?” Prescriptive Analytics Predictive Analytics Descriptive Analytics

Big-Data Analysis Too Big, too Unstructured, too many different source to be manageable through traditional databases 32

The Rise of “Big Data” “Too Big” means databases or data flows in petabytes (1,000 terabytes) – Google processes about 24 petabytes of data per day “Too unstructured” means that the data isn’t easily put into the traditional rows and columns of conventional databases 33 Source: Thomas H. Davenport, "Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data", FT Press, 2012

Examples of Big Data Online information – Clickstream data from Web and social media content Tweets Blogs Wall postings Video data – Retail and crime/intelligence environments – Rendering of video entertainment Voice data – call centers and intelligence intervention Life sciences – Genomic and proteomic data from biological research and medicine 34 Source: Thomas H. Davenport, "Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data", FT Press, 2012

35 Source:

36 Source:

Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses What Big Data is and why it's important Industry examples (Financial Services, Healthcare, etc.) Big Data and the New School of Marketing Fraud, risk, and Big Data Big Data technology Old versus new approaches Open source technology for Big Data analytics The Cloud and Big Data 37 Source:

Predictive analytics Crowdsourcing analytics Computing platforms, limitations, and emerging technologies Consumption of analytics Data visualization as a way to take immediate action Moving from beyond the tools to analytic applications Creating a culture that nurtures decision science talent A thorough summary of ethical and privacy issues 38 Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses Source:

What is BIG Data ? Volume Large amount of data Velocity Needs to be analyzed quickly Variety Different types of structured and unstructured data 39 Source:

Big Ideas: How Big is Big Data? 40 Source:

Big Ideas: Why Big Data Matters 41 Source:

Key questions enterprises are asking about Big Data How to store and protect big data? How to backup and restore big data? How to organize and catalog the data that you have backed up? How to keep costs low while ensuring that all the critical data is available when you need it? 42 Source:

Volumes of Data Facebook – 30 billion pieces of content were added to Facebook this past month by 600 million plus users Youtube – More than 2 billion videos were watch on YouTube yesterday Twitter – 32 billion searches were performed last month on Twitter 43 Source:

44 Source:

45 Source:

46 Source:

47 Source:

48 Big Data Vendors and Technologies Source:

Processing Big Data Google 49 Source:

Processing Big Data, Facebook 50

Summary Business Intelligence Implementation Business Intelligence Trends Data Science Big Data Analytics – Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses 51

References Yeoh, W., & Koronios, A. (2010). Critical success factors for business intelligence systems. Journal of computer information systems, 50(3), 23. Lim, E. P., Chen, H., & Chen, G. (2013). Business Intelligence and Analytics: Research Directions. ACM Transactions on Management Information Systems (TMIS), 3(4), 17 McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution. Harvard business review. Davenport, T. H., & Patil, D. J. (2012). Data Scientist. Harvard business review. Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1), Dhar, V. (2013). Data science and prediction. Communications of the ACM, 56(12), Thomas H. Davenport, Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data, FT Press, 2012 Michael Minelli, Michele Chambers, Ambiga Dhiraj, Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses, Wiley, 2013 Viktor Mayer-Schonberger, Kenneth Cukier, Big Data: A Revolution That Will Transform How We Live, Work, and Think, Eamon Dolan/Houghton Mifflin Harcourt,