Routing in the Internet The Global Internet consists of Autonomous Systems (AS) interconnected with eachother: Stub AS: small corporation Multihomed AS:

Slides:



Advertisements
Similar presentations
Network Layer4-1 Hierarchical Routing scale: with 200 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would.
Advertisements

Lecture 9 Overview. Hierarchical Routing scale – with 200 million destinations – can’t store all dests in routing tables! – routing table exchange would.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 22 Omar Meqdadi Department of Computer Science and Software Engineering University.
Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol –Datagram format.
Lecture 8 Overview. Graph abstraction u y x wv z Graph: G = (N,E) N = set of routers = { u, v, w, x, y, z } E = set of links ={ (u,v),
4a-1 CSE401: Computer Networks Hierarchical Routing & Routing in Internet S. M. Hasibul Haque Lecturer Dept. of CSE, BUET.
4: Network Layer4b-1 IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier Internet checksum time.
4: Network Layer4b-1 Network Layer Protocols CSIT435 Spring 2002.
1 Routing Protocols and Forwarding  The IP protocol  Routing Protocols o Intra-domain (inside an AS) o Inter-domain (between ASes)  Forwarding: inside.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
RD-CSY3021 Comparing Routing Protocols. RD-CSY3021 Criteria used to compare routing protocols includes  Time to convergence  Proprietary/open standards.
Announcement r Project 3 out, due 3/10 r Homework 3 out last week m Due next Mon. 3/1.
Routing - II Important concepts: Hierarchical Routing, Intra-domain routing, inter- domain routing, RIP, OSPF, BGP, Router Architecture.
4: Network Layer4a : Inter and intra AS, RIP, OSPF, BGP, Router Architecture Last Modified: 6/23/2015 8:46:00 PM.
Spring Routing & Switching Umar Kalim Dept. of Communication Systems Engineering 04/05/2007.
14 – Inter/Intra-AS Routing
Routing in Wired Nets CS 215 W 01 - Mario Gerla. Routing Principles Routing: delivering a packet to its destination on the best possible path Routing.
Routing Algorithms & Routing Protocols  Shortest Path Routing  Flooding  Distance Vector Routing  Link State Routing  Hierarchical Routing  Broadcast.
Routing Protocols Chapter 25. Static Routing Typically used in hosts –Enter subnet mask, router (gateway), IP address –Perfect for cases with few connections,
1 ECE453 – Introduction to Computer Networks Lecture 10 – Network Layer (Routing II)
Network Layer – part 31 Customer-Provider Routing Relationships  The Global Internet consists of Autonomous Systems (AS) interconnected with each other:
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
14 – Inter/Intra-AS Routing Network Layer Hierarchical Routing scale: with > 200 million destinations: can’t store all dest’s in routing tables!
Lecture 14 ICMP: Internet Control Message Protocol r used by hosts, routers, gateways to communication network-level information m error reporting: unreachable.
1 Computer Communication & Networks Lecture 22 Network Layer: Delivery, Forwarding, Routing (contd.)
Network Layer 1 Goals:  Understand Internet network layer concepts  Understand Internet routing  Understand Internet network layer protocols Content:
Routing in the Internet The Global Internet consists of Autonomous Systems (AS) interconnected with eachother: Stub AS: small corporation Multihomed AS:
Introduction 1 Lecture 21 Network Layer (Routing Activity) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
Routing protocols Basic Routing Routing Information Protocol (RIP) Open Shortest Path First (OSPF)
RSC Part II: Network Layer 6. Routing in the Internet (2 nd Part) Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
Introduction 1 Lecture 19 Network Layer (Routing Protocols) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
CS 3830 Day 29 Introduction 1-1. Announcements r Quiz 4 this Friday r Signup to demo prog4 (all group members must be present) r Written homework on chapter.
10-1 Last time □ Transitioning to IPv6 ♦ Tunneling ♦ Gateways □ Routing ♦ Graph abstraction ♦ Link-state routing Dijkstra's Algorithm ♦ Distance-vector.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
4: Network Layer4a-1 Routing in the Internet r The Global Internet consists of Autonomous Systems (AS) interconnected with each other: m Stub AS: small.
Network Layer4-1 Intra-AS Routing r Also known as Interior Gateway Protocols (IGP) r Most common Intra-AS routing protocols: m RIP: Routing Information.
TCOM 509 – Internet Protocols (TCP/IP) Lecture 06_a Routing Protocols: RIP, OSPF, BGP Instructor: Dr. Li-Chuan Chen Date: 10/06/2003 Based in part upon.
ICT 6621 : Advanced NetworkingKhaled Mahbub, IICT, BUET, 2008 Lecture 5 TCP/IP Network Layer (3)
Internet Protocols. ICMP ICMP – Internet Control Message Protocol Each ICMP message is encapsulated in an IP packet – Treated like any other datagram,
4: Network Layer4b-1 OSPF (Open Shortest Path First) r “open”: publicly available r Uses Link State algorithm m LS packet dissemination m Topology map.
Routing in the Inernet Outcomes: –What are routing protocols used for Intra-ASs Routing in the Internet? –The Working Principle of RIP and OSPF –What is.
Transport Layer3-1 Network Layer Every man dies. Not every man really lives.
Network Layer4-1 Routing Algorithm Classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Internet and Intranet Protocols and Applications Lecture 9 Internet Routing Algorithms and Protocols March 27, 2002 Joseph Conron Computer Science Department.
IP. Classless Inter-Domain Routing Classful addressing scheme wasteful – IP address space exhaustion – A class B net allocated enough for 65K hosts Even.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Chapter 25 Internet Routing. Static Routing manually configured routes that do not change Used by hosts whose routing table contains one static route.
Routing Protocols 1 ProtocolsLayer name DNSApplication TCP, UDPTransport IPInternet (Network ) WiFi, Ethernet Link (Physical)
1 CS716 Advanced Computer Networks By Dr. Amir Qayyum.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Routing in the Internet
14 – Inter/Intra-AS Routing
Homework 4 Out: Fri 2/24/2017 In: Fri 3/10/2017.
Chapter 4: Network Layer
NAT – Network Address Translation
Homework 4 Out: Fri 2/26/2016 In: Fri 3/11/2016.
ICMP ICMP – Internet Control Message Protocol
Chapter 4: Network Layer
Hierarchical Routing Our routing study thus far – an idealization
Department of Computer and IT Engineering University of Kurdistan
Part 4: Network Layer Part B: The Internet Routing Protocols
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Computer Networks Protocols
Presentation transcript:

Routing in the Internet The Global Internet consists of Autonomous Systems (AS) interconnected with eachother: Stub AS: small corporation Multihomed AS: large corporation (no transit) Transit AS: provider Two level routing: Intra-AS: administrator is responsible for choice Inter-AS: unique standard

Internet AS Hierarchy

Intra-AS Routing Also known as Interior Gateway Protocol (IGP) Most common IGPs: RIP: Routing Information Protocol OSPF: Open Shortest Path First IGRP: Interior Gateway Routing Protocol (Cisco propr.)

RIP ( Routing Info Protocol) Distance vector type scheme Included in BSD-UNIX Distribution in 1982 Distance metric: # of hops (max = 15 hops) Distance vector: exchanged every 30 sec via a Response Message (also called Advertisement) Each Advertisement contains up to 25 destination nets

RIP

destination networknext routernumber of hops to destination 1A2 20B2 30B ….….....

RIP: Link Failure and Recovery If no advertisement heard after 180 sec, neighbor/link dead Routes via the neighbor are invalidated; new advertisements sent to neighbors Neighbors in turn send out new advertisements if their tables changed Link failure info quickly propagates to entire net Poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

RIP Table processing RIP routing tables managed by an application process called route-d (demon) advertisements encapsulated in UDP packets (no reliable delivery required; advertisements are periodically repeated)

RIP Table processing

RIP Table example Destination Gateway Flags Ref Use Interface UH lo U 2 13 fa U le U 2 25 qaa U 3 0 le0 default UG

RIP Table example (cont) RIP Table example (at router giroflee): Three attached class C networks (LANs) Router only knows routes to attached LANs Default router used to “go up” Route multicast address: Loopback interface (for debugging)

OSPF (Open Shortest Path First) “open”: publicly available uses the Link State algorithm (ie, LS packet dissemination; topology map at each node; route computation using Dijkstra’s alg) OSPF advertisement carries one entry per neighbor router advertisements disseminated to ENTIRE Autonomous System (via flooding)

OSPF “advanced” features (not in RIP) Security: all OSPF messages are authenticated (to prevent malicious intrusion); TCP connections used Multiple same-cost paths allowed (only one path in RIP) For each link, multiple cost metrics for different TOS (eg, satellite link cost set “low” for best effort; high for real time) Integrated uni- and multicast support: Multicast OSPF (MOSPF) uses same topology data base as OSPF Hierarchical OSPF in large domains

Hierarchical OSPF

Two level hierarchy: local area and backbone Link state advertisements do not leave respective areas Nodes in each area have detailed area topology; they only know direction (shortest path) to networks in other areas Area Border routers “summarize” distances to networks in the area and advertise them to other Area Border routers Backbone routers run an OSPF routing alg limited to the backbone Boundary routers connect to other ASs

IGRP (Interior Gateway Routing Protocol) CISCO proprietary; successor of RIP (mid 80’s) Distance Vector, like RIP several cost metrics (delay, bandwidth, reliability, load etc) uses TCP to exchange routing updates routing tables exchanged only when costs change Loop free routing achieved by using a Distributed Updating Alg. (DUAL) based on diffused computation In DUAL, after a distance increase, the routing table is frozen until all affected nodes have learned of the change

Inter-AS routing

Inter-AS routing (cont) BGP (Border Gateway Protocol): the de facto standard Path Vector protocol: and extension of Distance Vector Each Border Gateway broadcast to neighbors (peers) the entire path (ie, sequence of AS’s) to destination For example, Gwy X may store the following path to destination Z: Path (X,Z) = X,Y1,Y2,Y3,…,Z

Inter-AS routing (cont) Now, suppose Gwy X send its path to peer Gwy W Gwy W may or may not select the path offered by Gwy X, because of cost, policy or loop prevention reasons If Gwy W selects the path advertised by Gwy X, then: Path (W,Z) = w, Path (X,Z) Note: path selection based not so much on cost (eg,# of AS hops), but mostly on administrative and policy issues (eg, do not route packets through competitor’s AS)

Inter-AS routing (cont) Peers exchange BGP messages using TCP OPEN msg opens TCP connection to peer and authenticates sender UPDATE msg advertises new path (or withdraws old) KEEPALIVE msg keeps connection alive in absence of UPDATES; it also serves as ACK to an OPEN request NOTIFICATION msg reports errors in previous msg; also used to close a connection

Address Management As Internet grows, we run out of addresses Solution (a): subnetting. Eg, Class B Host field (16bits) is subdivided into fields Solution (b): CIDR (Classless Inter Domain Routing): assign block of contiguous Class C addresses to the same organization; these addresses all share a common prefix repeated “aggregation” within same provider leads to shorter and shorter prefixes CIDR helps also routing table size and processing: Border Gwys keep only prefixes and find “longest prefix” match

Why different Intra- and Inter-AS routing ? Policy: Inter is concerned with policies (which provider we must select/avoid, etc). Intra is contained in a single organization, so, no policy decisions necessary Scale: Inter provides an extra level of routing table size and routing update traffic reduction above the Intra layer Performance: Intra is focused on performance metrics; needs to keep costs low. In Inter it is difficult to propagate performance metrics efficiently (latency, privacy etc). Besides, policy related information is more meaningful. We need BOTH!