Mitglied der Helmholtz-Gemeinschaft Polarized Fusion by Giuseppe Ciullo INFN and University of Ferrara for Ralf Engels JCHP / Institut für Kernphysik,

Slides:



Advertisements
Similar presentations
The Hadron Physics Program at COSY-ANKE: selected results
Advertisements

Mitglied der Helmholtz-Gemeinschaft TSU HEPI Double-polarised np-scattering experiments at ANKE David Mchedlishvili for the ANKE collaboration HEPI, Tbilisi.
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
1 Monoenergetic proton radiography of laser-plasma interactions and capsule implosions 2.7 mm 15-MeV proton backlighter (imploded D 3 He-filled capsule)
Spin Filtering Studies at COSY and AD Alexander Nass for the collaboration University of Erlangen-Nürnberg SPIN 2008, Charlottesville,VA,USA, October 8,
Studies on Beam Formation in an Atomic Beam Source
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear.
IPN Orsay FEW-BODY 19th – Bonn Jean-Pierre DIDELEZ Persistence of the Polarization in a Fusion Process J. P. Didelez IPN and C. Deutsch LPGP Orsay DT polarization.
R. D. Foster, C. R. Gould, D. G. Haase, J. H. Kelley, D. M. Markoff, (North Carolina State University and TUNL), W. Tornow (Duke University and TUNL) Supported.
Tony WeidbergNuclear Physics Lectures1 Applications of Nuclear Physics Fusion –(How the sun works covered in Astro lectures) –Fusion reactor Radioactive.
Power of the Sun. Conditions at the Sun’s core are extreme –temperature is 15.6 million Kelvin –pressure is 250 billion atmospheres The Sun’s energy out.
Mitglied der Helmholtz-Gemeinschaft DSMC simulations of polarized atomic beam sources including magnetic fields September 13, 2013 | Martin Gaisser, Alexander.
Energy “Laws” Energy “Producers” Energy “Consumers” Next step: Panels Sustainable Energy: Complex problem that requires long term planning and government.
Spin physics at Storage Rings
October 3, 2006E. Steffens – Spin The HERMES Polarized H&D Gas Target: 10 Years of Operation Erhard Steffens University of Erlangen-Nürnberg and.
DT polarization and Fusion Process Magnetic Confinement Inertial Confinement Persistence of the Polarization - Polarized D and 3 He in a Tokamak - DD Fusion.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Deuterium/Hydrogen Molecules Possible Fuel for Nuclear Fusion Reactors? by Ralf Engels.
Nuclear Chemistry L. Scheffler. The Nucleus The nucleus is comprised of the two nucleons: protons and neutrons. The number of protons is the atomic number.
Fragmentation mechanisms for Methane induced by electron impact
Lecture on Targets A. Introduction scattering exp., gas target, storage ring B. Basics on Vacuum, Gas Flow etc pumps, molecular flow & tubes, T-shaped.
Mitglied der Helmholtz-Gemeinschaft Petersburg Nuclear Physics Institute, Russia Storage cells for internal experiments with Atomic Beam Source at the.
K. Czerski Institute of Physics, University of Szczecin Euratom Workshop Szczecin, Deuteron Fusion Reactions in Metallic Environments.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Hydrogen/Deuterium Molecules A new Option for Polarized Targets? by Ralf Engels JCHP.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
HD target. HD target overview Characteristics of polarized HD target Polarization Method HD target is polarized by the static method using “brute force”
Mitglied der Helmholtz-Gemeinschaft TSU TBILISI STATE UNIVERSITY The pn-system Study at Internal ANKE Experiment HEPI, Tbilisi State University IKP, Forschungszentrum.
Deuteron Polarimetry at COSY September 13, 2007 D.Eversheim, PSTP Some Introductory Remarks Some Experimental Details Concerning EDDA Deuteron Polarimetry.
RIKEN/Tokyo-Russia Collaboration of Polarized Deuteron Experiments CNS, Univ. of Tokyo T. Uesaka.
Fusion in the Stars Nunez & Panogalinog. Nuclear Fusion in stars is one of the most important reasons which make life on Earth possible! ○ HOW IS THAT.
Recent progress in N* physics from Kaon photoproduction experiments at CLAS using polarization observabes. The Rutherford Centennial Conference on Nuclear.
Possibility to increase intensity of polarized hydrogen target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia Spin Physics Workshop.
Status of the Source of Polarized Ions project for the JINR accelerator complex (June 2013) V.V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, Yu.V. Prokofichev.
Mitglied der Helmholtz-Gemeinschaft Physics at COSY-Jülich December 2010 | Hans Ströher (Forschungszentrum Jülich, Univ. Cologne) Baryons´10, Osaka (Japan),
Laser-Driven H/D Target at MIT-Bates Ben Clasie Massachusetts Institute of Technology Ben Clasie, Chris Crawford, Dipangkar Dutta, Haiyan Gao, Jason Seely.
Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz.
TENSOR POLARIZED DEUTERON BEAM AT THE NUCLOTRON Yu.K.Pilipenko, V.P.Ershov, V.V.Fimushkin, A.Yu.Isupov, L.V.Kutuzova, V.P.Ladigin, N.M.Piskunov, V.P.Vadeev,
Extra Physics with an Atomic Beam Source and a Lamb-Shift Polarimeter
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE-Collaboration Institut für Kernphysik, Forschungszentrum.
Perspectives for polarized antiprotons Paolo Lenisa Università di Ferrara and INFN - Italy Perspectives for Polarized Antiprotons MENU 2013 – Rome, September.
1 Possibility to obtain a polarized hydrogen molecular target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia XIV International.
Applications of Nuclear Physics
P.F.Dalpiaz16 june Polarized Antiproton at FAIR The PAX experiment P.F.Dalpiaz P.F.DalpiazFerrara 2 workshop on the QCD structure of the nucleon.
The Polarized Internal Target at ANKE: First Results Kirill Grigoryev Institut für Kernphysik, Forschungszentrum Jülich PhD student from Petersburg Nuclear.
P. Kravtsov Petersburg Nuclear Physics Institute DOUBLE POLARIZED DD-FUSION P. Kravtsov, N. Chernov, K. Grigoryev, I. Ivanov, E. Komarov,
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
Possibility of direct extraction of the transversitiy from polarized Drell-Yan measurement in COMPASS Transversity Drell-Yan for transverstiy transverse.
The Lineage of Nuclear Polarization Instrumentation Often Leads Through Madison Thomas B. Clegg University of North Carolina at Chapel Hill and Triangle.
17th Crystal Ball Meeting
1 Nuclear Fusion Class : Nuclear Physics K.-U.Choi.
Neutron exposure at CERN Mitsu KIMURA 19 th July 2013.
The Polarized Internal Gas Target of ANKE at COSY
NEEP 541 – Neutron Damage Fall 2002 Jake Blanchard.
Mitglied der Helmholtz-Gemeinschaft Development of 3D Polarimeters for storage ring EDM searches JEDI Collaboration | David Chiladze (IKP, Forschungszentrum.
Please remember to sit in assigned seats… before bell rings Outcome: SWBAT Compare and contrast nuclear fusion and fission by reviewing a video and creating.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
Mitglied der Helmholtz-Gemeinschaft Summary of the target session of the IEB Workshop June 19, 2015 | Alexander Nass.
10/10/2008 Mitglied der Helmholtz-Gemeinschaft First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE collaboration.
Polarized internal gas target at LHC
Spin Polarized Fuel for Increased Fusion Gain
Fusion Susan Cartwright.
The Frascati Neutron Generator
Petersburg Nuclear Physics Institute
Feasibility Study of the Polarized 6Li ion Source
Advantages of Nuclear Fusion
Production and Storage of Polarized H2, D2 and HD Molecules
for the A1 collaboration
Presentation transcript:

Mitglied der Helmholtz-Gemeinschaft Polarized Fusion by Giuseppe Ciullo INFN and University of Ferrara for Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear Fusion with Polarized Particles

2 The first three reactor generations, organized according to relative energy (temperature) requirement for fusion. Polarized Fusion Total cross section Energy production: 1. Generation: D + T 4 He + n Highest cross section at lowest temperature 2. Generation: D + D t + p or 3 He + n Fuel everywhere available 3. Generation 3 He + D 4 He + p Neutron lean reactor if D+D suppressed (More fusion reactions are possible !) Up to now: The D + D reactions are used in scientific tokomaks (ITER is optimized for DT!)

3 Can the total cross section of the fusion reactions be increased by using polarized particles ? 3 He + d 4 He + p t + d 4 He + n J = 3/2 + / s-wave dominated (~96%) H. Paetz gen. Schieck, Eur. Phys. J. A 44, (2010) Polarized Fusion More details in A. Sandorfi’s talk and Factor: ~1.5 at 107 keV Factor: ~1.5 at 430 keV [Ch. Leemann et al., Helv. Phys. Acta 44, 141 (1971)]

4 What is the advantage for fusion reactors ? Polarized Fusion Laser Pellet target (DT pellets) (Berkeley, Orsay, Darmstadt, …) 1.) Inertial Fusion (Laser induced fusion)

5 What is the advantage for fusion reactors ? Calculation by M. Temporal et al. for the „Megajoule“ Project Polarized Fusion M. Temporal et al.; “Ignition conditions for inertial confinement fusion targets with polarized DT fuel” Nucl. Fusion 52 (2012)  DT pol =  DT unpol

6 Can the trajectories of the ejectiles be controlled by using polarized particles ? Polarized Fusion Total cross section Unpolarized differential cross section

7 1 st generation reactor: polarized fuel helps to optimize fusion reactors D + T ( 3 He + D) polarized fuel 1 st * * * D and T spin || to the confinement field:  and n emitted as sin 2  respect to B * D spin ┴ to the confinement field and T unpolarized: no influence on cross section, but the reaction products follow (1+3cos 2  ). Confirmed on mirror reaction 3 He(d,p) 4 He [Ch. Leeman et al Helv. Phys. Acta 44 (1971) 141]

8 D + D reactors D + D → T + p 50% (no n) → 3 He + n 50%(*) D + T can fuses (n) 3 He does not contribute at the ignition energy of D-D D ↑ + D ↑ spin dependent cross section (data set very poor), at low energy (electron screening ?). 2 nd D + 3 He → 4 He +p ? Can we have neutron free reactor? 3 rd If we suppress or reduce D-D fusion, we could have neutron free or lean reactors?

9 Spin allows to enhance or suppress reaction channels Neutron lean fusion reactor D - 3 He D ↑ (d ↑ p) T and D ↑ (d ↑ n) 3 He suppressed by choosing deuteron spin parallel each others S S 2 Quintet State Suppressed S S 0 Singlet state allowed D↑D↑ D↑D↑ 4 He*

10 Polarized Fusion Deltuva in Nuclear fusion with polarized nucleons Trento Nov 2013

11 Which questions must be solved ? 1.) Dependence of the total cross section from the polarization for all fusion reactions. Polarized Fusion d + d t + p 3 He + n Can cross sections be increased ? Can neutrons be suppressed ? Can the trajectories of the neutrons be controlled? Reaction is not s-wave dominated !

12 Spins of both deuterons are aligned: Only p z (q z ) and p zz (q zz ) ≠ 0 Only beam is polarized: (p i,j ≠ 0, q i,j = 0) σ(,Φ) = σ 0 () · {1 + 3/2 A y () p y + 1/2 A xz () p xz + 1/6 A xx-yy () p xx-zz + 2/3 A zz () p zz } Polarized Fusion

13 The Experimental Setup at PNPI ABS from the SAPIS project: (after upgrade) ~ 4 ∙ a/s → ~ 2 ∙ a/cm 2 POLIS (KVI, Groningen) Ion beam: I ≤ 20 μA → 1.5 ∙ d/s ( E beam ≤ 32 keV ) dd-fusion polarimeter LSP from POLIS LSP from the SAPIS project Luminosity: 3 ∙ /cm 2 s → count rate: ~ 40 /h → 2 month of beam time Detector Setup: 4π covered by - large pos. sens. Detectors - (~ 500 single PIN diodes ?) ABS from Ferrara: ~ 6 ∙ a/s → ~ 3 ∙ a/cm 2 Luminosity: 4.5 ∙ /cm 2 s → count rate: ~ 60 /h → 1 month of beam time P. Kravtsov in Nuclear fusion with polarized nucleons Trento Nov 2013

14 POLIS and Ferrara PNPI ← POLIS → ← ABS from Fe

15 Which questions must be solved ? 1.) Dependence of the total cross section from the polarization for all fusion reactions. (d+d is underway) 2.) Polarization conservation in the different plasmas ? a.) Magnetic confinement: Details in the next talk by Andrew Sandorfi (US-Patent by H. Greenside, R. Budny and D. Post on a special surface for polarization conservation on the wall !) b.) Inertial Fusion (Laser induced): - J.P. Didelez and C. Deutsch; 2011 Laser and Particle Beams M. Büscher (FZJ / Uni. Düsseldorf) „Laser Acceleration“ Polarized Fusion

16 Laser Acceleration ~ 100 GV/m Proton rich dot 20x20x0.5 μm 10 8 protons at 1.5 MeV protons up to 10 MeV Laser Acceleration of pol. 3 He 2+ ions from pol. 3 He gas jets A.Holler in Nuclear fusion with polarized nucleons Trento Nov 2013

17 Which questions must be solved ? 1.) Dependence of the total cross section from the polarization for all fusion reactions. 2.) Polarization conservation in the different plasmas ? 3.) How to produce polarized fuel ? - HD targets are available (10 mK, ~15 T -> see next talk ) -> frozen spin DT targets possible ?? Gaseous fuel a.) pol. 3 He is available („Laser-pumping“) b.) pol. T will be possible with a similar method c.) pol. D ??? Polarized Fusion

18 ANKE/COSY Main parts of a PIT: Atomic Beam Source Target gas hydrogen or deuterium H/D beam intensity (2 hyperfine states) / atoms/s Beam size at the interaction point σ = 2.85 ± 0.42 mm Polarization for hydrogen/deuterium P Z = 0.89 ± 0.01 P Z = ± 0.01 P z = ± 0.01 / ± 0.01 P zz = ± 0.03 / ± 0.01 Lamb-Shift Polarimeter Storage Cell

19 Polarized H 2 /D 2 Molecules Nuclear Polarization of Hydrogen Molecules from Recombination of Polarized Atoms T.Wise et al., Phys. Rev. Lett. 87, (2001). Measurements from NIKHEF, IUCF, HERMES show that recombined molecules retain fraction of initial nuclear polarization of atoms! polarized unpolarized P m = 0.5 Naïve model Is there a way to increase P m (surface material, T, B etc)?

20 The Setup ISTC Project # 1861 PNPI, FZJ, Uni. Cologne DFG Project: 436 RUS 113/977/0-1

21 Polarized H 2 Molecules P m = ± 0.02 n = 277 ± 31 Protons: P m = ± 0.02 n = 174 ± 19 c = ± Measurements on Fomblin Oil (Perfluorpolyether PFPE) HFS 3 (P a = ) H 2 - Ions: + T Cell = 100 K Expected max. molecular polarizaton P m = ) R. Engels et al. RSI 85 (2014)

22 Which questions must be solved ? 1.) Dependence of the total cross section from the polarization for all fusion reactions. 2.) Polarization conservation in the different plasmas ? 3.) How to produce polarized fuel ? - HD targets are available (10 mK, ~15 T -> see next talk ) -> frozen spin DT targets possible ?? Gaseous fuel a.) pol. 3 He is available („Laser-pumping“) b.) pol. T will be possible with a similar method c.) pol. D ??? => new ideas are welcome !!!! Polarized Fusion