Calculating the infrared spectra of hot astrophysical molecules SELAC, May 2005 Jonathan Tennyson University College London.

Slides:



Advertisements
Similar presentations
Modelling Water Dimer Band Intensities and Spectra Matt Barber Jonathan Tennyson University College London 10 th February 2011
Advertisements

Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London 13 th May 2010
R. S. RAM and P. F. BERNATH Department of Chemistry, University of York, Heslington, York YO10 5DD, UK. and Department of Chemistry, University of Arizona,
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Jonathan Tennyson Physics and Astronomy, University College London AELG-fest July 2010 Spectroscopic linelists for hot molecules of astrophysical importance.
Jonathan Tennyson Physics and Astronomy, University College London Ohio, June 2011 Molecular line lists for exoplanet & other atmospheres Artist’s impression.
The role of asymptotic states in H 3 + Jonathan Tennyson Department of Physics and Astronomy Royal Society University College London Jan 2006 HPCx supercomputer:
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
A L INE L IST FOR H YDROGEN S ULPHIDE (H 2 S) Ala’a A. A. Azzam J. Tennyson and S. Yurchencko Department of Physics and Astronomy, University College London,
Spectroscopy for Hot Super- Earth Exoplanets P. F. Bernath and M. Dulick Department of Chemistry & Biochemistry Old Dominion University, Norfolk, VA.
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
ASTRONOMICAL APPLICATIONS OF NEW LINE LISTS FOR CN, C 2 AND THEIR ISOTOPOLOGUES P. F. Bernath Department of Chemistry and Biochemistry, Old Dominion University,
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
Modelling Water Dimer Band Intensities and Spectra Matt Barber Jonathan Tennyson University College London 29 th September 2010
Simulating the spectrum of the water dimer in the far infrared and visible Ross E. A. Kelly, Matt J. Barber, Jonathan Tennyson Department of Physics and.
Laboratory spectroscopy of H3+
Theoretical work on the water monomer Matt Barber Jonathan Tennyson University College London
High-accuracy ab initio water line intensities Lorenzo Lodi University College London Department of Physics & Astronomy.
(8) Absorption – Visible and IR Physics of the Atmosphere II Atmo II 193a.
Spectral Regions and Transitions
SPECTRA, an Internet Accessible Information System for Spectroscopy of Atmospheric Gases Semen MIKHAILENKO, Yurii BABIKOV, Vladimir.
EXPERIMENTAL ABSORPTION SPECTRA OF HOT CH 4 IN THE PENTAD AND OCTAD REGION ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
Vibration-rotation spectra from first principles Lecture 2: Calculations of spectroscopic accuracy Jonathan Tennyson Department of Physics and Astronomy.
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
Calculation of rovibrational H 3 + lines. New level of accuracy Slides of invited talk at Royal Society conference on H 3 + Oleg L. Polyansky 1,2 1 Institute.
Towards perfect water line intensities Lorenzo Lodi University College London, Dept of physics & Astronomy, London, UK.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
APOGEE: The Apache Point Observatory Galactic Evolution Experiment l M. P. Ruffoni 1, J. C. Pickering 1, E. Den Hartog 2, G. Nave 3, J. Lawler 2, C. Allende-Prieto.
Model atmospheres for Red Giant Stars Bertrand Plez GRAAL, Université de Montpellier 2 RED GIANTS AS PROBES OF THE STRUCTURE AND EVOLUTION OF THE MILKY.
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall.
Jonathan Tennyson Physics and Astronomy, University College London Columbus June 2013 Molecular line lists for exoplanets and other atmosheres Artist’s.
ExoMol: molecular line lists for astrophysical applications
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
TiH IN SUBDWARFS P. F. Bernath Department of Chemistry, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 C.W. Bauschlicher, Jr NASA Ames Research.
Jonathan Tennyson Physics and Astronomy UCL Paris, Nov 2008 Molecular linelists for extrasolar planets Artist’s impression of HD189733b C. Carreau, ESA.
Astronomical spectroscopy Lecture 1: Hydrogen and the Early Universe Jonathan Tennyson Department of Physics and Astronomy Helsinki University College.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Theoretical Modelling of the Water Dimer: Progress and Current Direction Ross E. A. Kelly, Matt Barber, & Jonathan Tennyson Department of Physics & Astronomy.
FTIR EMISSION SPECTROSCOPY AND AB INITIO STUDY OF THE TRANSIENT BO AND HBO MOLECULES 65 th Ohio State University International Symposium on Molecular Spectroscopy.
QED of H 3 + Oleg L. Polyansky 1,2 1 Institute of Applied Physics, Russian Academy of Sciences, Uljanov Street 46, Nizhnii Novgorod, Russia Department.
Xinchuan Huang, 1 David W. Schwenke, 2 Timothy J. Lee 2 1 SETI Institute, Mountain View, CA 94043, USA 2 NASA Ames Research Center, Moffett Field, CA 94035,
Towards experimental accuracy from the first principles Ab initio calculations of energies of small molecules Oleg L. Polyansky, L.Lodi, J.Tennyson and.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
O 2 ENERGY LEVELS, BAND CONSTANTS, POTENTIALS, FRANCK- CONDON FACTORS AND LINELISTS INVOLVING THE X 3  g, a 1  g AND b 1  + g STATES SHANSHAN YU, BRIAN.
Evaluation of the Experimental and Theoretical Intensities of Water- Vapor Lines in the 2 µm Region Using Spectra from the Solar- Pointing FTS Iouli Gordon,
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
ENERGY LEVELS OF THE NITRATE RADICAL BELOW 2000 CM -1 Christopher S. Simmons, Takatoshi Ichino and John F. Stanton Molecular Spectroscopy Symposium, June.
Jonathan Tennyson Physics and Astronomy, University College London Emory October 2012 Molecular line lists for exoplanets and other atmospheres Artist’s.
Optical Zeeman Spectroscopy of Iron Monohydride, FeH Jinhai Chen, Timothy C. Steimle Department of Chemistry and Biochemistry, Arizona State University.
AYTY: A new hot line- list for formaldehyde A. F. Al-Refaie, S. N. Yurchenko, A. Yachmenev, J. Tennyson Department of Physics Astronomy - University College.
Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica.
Fourier Transform Emission Spectroscopy of Some New Bands of ReN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ and P. F. Bernath.
Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
Progress Towards a High-Precision Infrared Spectroscopic Survey of the H 3 + Ion Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
High-Resolution Near-Infrared Spectroscopy of H 3 + Above the Barrier to Linearity Jennifer Gottfried and Takeshi Oka University of Chicago Benjamin J.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
HOT EMISSION SPECTRA FOR ASTRONOMICAL APPLICATIONS: CH 4 & NH 3 R. Hargreaves, L. Michaux, G. Li, C. Beale, M. Irfan and P. F. Bernath 1 Departments of.
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
Jonathan Tennyson Physics and Astronomy, University College London Hitran meeting World Cup 2010 Calculating the spectroscopic behaviour of hot molecules.
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
Ab initio calculations of highly excited NH3 levels
Fourier Transform Infrared Spectral
Hot Cold Molecules: Collisions at Astrophysical Temperatures
Presentation transcript:

Calculating the infrared spectra of hot astrophysical molecules SELAC, May 2005 Jonathan Tennyson University College London

Layers in a star: the Sun

Spectrum of a hot star: black body-like

Infra red spectrum of an M-dwarf star

Cool stellar atmospheres : dominated by molecular absorption Brown Dwarf M-dwarf The molecular opacity problem (  m)

Cool stars: T = 2000 – 4000 K Thermodynamics equilibrium, 3-body chemistry C and O combine rapidly to form CO. M-Dwarfs: Oxygen rich, n(O) > n(C) H 2, H 2 O, TiO, ZrO, etc also grains at lower T C-stars: Carbon rich, n(C) > n(O) H 2, CH 4, HCN, C 3, HCCH, CS, etc S-Dwarfs: n(O) = n(C) Rare. H 2, FeH, MgH, no polyatomics Also (primordeal) ‘metal-free’ stars H, H 2, He, H , H 3 + only at low T

Also sub-stellar objects: CO less important Brown Dwarfs: T ~ 1500 K H 2, H 2 O, CH 4 T-Dwarfs: T ~ 1000K ‘methane stars’ How common are these? Deuterium burning test using HDO? Burn D only No nuclear synthesis

Modeling the spectra of cool stars Spectra very dense – cannot get T from black-body fit. Synthetic spectra require huge databases > 10 6 vibration-rotation transitions per triatomic molecule Sophisticated opacity sampling techniques. Partition functions also important Data distributed by R L Kururz (Harvard), see kurucz.harvard.edu

Physics of molecular opacities: Closed Shell diatomics CO, H 2, CS, etc Vibration-rotation transitions. Sparse: ~10,000 transitions Generally well characterized by lab data and/or theory (H 2 transitions quadrupole only) HeH +

Physics of molecular opacities: Open Shell diatomics TiO, ZrO, FeH, etc Low-lying excited states. Electronic-vibration-rotation transitions Dense: ~10,000,000 transitions (?) TiO now well understood using mixture of lab data and theory

Physics of molecular opacities: Polyatomic molecules H 2 O, HCN, H 3 +, C 3, CH 4, HCCH, etc Vibration-rotation transitions Very dense: 10,000,000 – 100,000,000 Impossible to characterize in the lab Detailed theoretical calculations Computed opacities exist for: H 2 O, HCN, H 3 +

Ab initio calculation of rotation-vibration spectra

The DVR3D program suite : triatomic vibration-rotation spectra Potential energy Surface,V(r 1,r 2,  ) Dipole function  (r 1,r 2,  ) J Tennyson, MA Kostin, P Barletta, GJ Harris OL Polyansky, J Ramanlal & NF Zobov Computer Phys. Comm. 163, 85 (2004).

Potentials: Ab initio or Spectroscopically determined

H 3 + H 2 O H 2 S HCN/HNC HeH + Molecule considered at high accuracy

Partition functions are important Model of cool, metal-free magnetic white dwarf WD by Pierre Bergeron (Montreal) Is the partition function of H 3 + correct?

Partition functions are important Model of WD using ab initio H 3 + partition function of Neale & Tennyson (1996)

HCN opacity, Greg Harris High accuracy ab initio potential and dipole surfaces Simultaneous treatment of HCN and HNC Vibrational levels up to cm -1 Rotational levels up to J=60 Calculations used SG Origin 2000 machine 200,000,000 lines computed Took 16 months Partition function estimates suggest 93% recovery of opacity at 3000 K

Ab initio vs. laboratory HNC bend fundamental (462.7 cm -1 ). Q and R branches visible. Slight displacement of vibrational band centre (2.5 cm -1 ). Good agreement between rotational spacing. Good agreement in Intensity distribution. Q branches of hot bands visible. Burkholder et al., J. Mol. Spectrosc. 126, 72 (1987)

GJ Harris, YV Pavlenko, HRA Jones & J Tennyson, MNRAS, 344, 1107 (2003).

Importance of water spectra Other Models of the Earth’s atmosphere Major combustion product (remote detection of forest fires, gas turbine engines) Rocket exhaust gases: H 2 + ½ O 2 H 2 O (hot) Lab laser and maser spectra Astrophysics Third most abundant molecule in the Universe (after H 2 & CO) Atmospheres of cool stars Sunspots Water masers Ortho-para interchange timescales

Sunspots Image from SOHO : 29 March 2001 Molecules on the Sun T=5760K Diatomics H 2, CO, CH, OH, CN, etc Sunspots T=3200K H 2, H 2 O, CO, SiO

Sunspot lab Sunspot: N-band spectrum L Wallace, P Bernath et al, Science, 268, 1155 (1995)

Assigning a spectrum with 50 lines per cm -1 1.Make ‘trivial’ assignments (ones for which both upper and lower level known experimentally) 2. Unzip spectrum by intensity 6 – 8 % absorption strong lines 4 – 6 % absorption medium 2 – 4 % absorption weak < 2 % absorption grass (but not noise) 3. Variational calculations using ab initio potential Partridge & Schwenke, J. Chem. Phys., 106, 4618 (1997) + adiabatic & non-adiabatic corrections for Born-Oppenheimer approximation 4. Follow branches using ab initio predictions branches are similar transitions defined by J – K a = n a or J – K c = n c, n constant Only strong/medium lines assigned so far OL Polyansky, NF Zobov, S Viti, J Tennyson, PF Bernath & L Wallace, Science, 277, 346 (1997).

Sunspot lab Assignments Sunspot: N-band spectrum L-band, K-band & H-band spectra also assigned Zobov et al, Astrophys. J., 489, L205 (1998); 520, 994 (2000); 577, 496 (2002).

Assignments using branches Ab initio potential Less accurate but extrapolate well J Error / cm -1 Determined potential Spectroscopically Variational calculations: Accurate but extrapolate poorly

Observed Ludwig Jorgensen Miller & Tennyson Spectrum of M-dwarf star TVLM 513 Water opacities HRA Jones, S Viti, S Miller, J Tennyson, F Allard & PH Hauschildt (1996)

Viti & Tennyson computed VT2 linelist: All vibration-rotation levels up to 30,000 cm -1 Giving ~ 7 x 10 8 transitions Similar study by Partridge & Schwenke (PS), NASA Ames New study by Barber & Tennyson (BT1/BT2) Computed Water opacity Variational nuclear motion calculations High accuracy potential energy surface Ab initio dipole surface

Spectroscopically determined water potentials ReferenceYear  vib /cm -1 N vib E max /cm -1 Hoy, Mills & Strey Carter & Handy Halonen & Carrington Jensen Polyansky et al (PJT1) Polyansky et al (PJT2) Partridge & Schwenke Shirin et al  mportant to treat vibrations and rotations

Emission spectra of comet 153P/Ikeya-Zhang (C/2002 C1) N. Dello Russo et al, Icarus, 168, 186 (2004) & Astrophys. J., 621, 537 (2005) Gives rotational temperatures Rotational temperatures & ortho/para ratios Solar pumping Emission lines

Water in Mira Cooler than sunspot, but what is T? v r = 92 km s -1

Nova V838 Mon Exploded Feb 2002

DPK Banerjee, R.J. Barber, N.K. Ashok & J. Tennyson, Astrophys. J. Lett (submitted).

Water assignments using variational calculations Long pathlength absoption (T = 296K) cm -1 Fourier Transform and Cavity Ring Down Laboratory emisson spectra (T =1300  1800K) 400 – 6000 cm -1 Absorption in sunspots (T = 3200 K) N band, L band, K band, H band  m 3  m 2  m 1.4  m  new lines assigned Dataset of measured H 2 16 O energy levels J. Tennyson, N.F. Zobov, R. Williamson, O.L. Polyansky & P.F. Bernath, J. Phys. Chem. Ref. Data, 30, 735 (2001). New: lab torch spectra (T ~ 3000 K) from Bernath lines.

Bob Barber Greg Harris T heoretical A tomic and M olecular P hysics and A strophysics

Accuracy better than 1cm  1 Adiabatic or Born-Oppenheimer Diagonal Correction (BODC) Non-adiabatic corrections for vibration and rotation Electronic (kinetic) relativistic effect Relativistic Coulomb potential (Breit effect) Radiative correction (Lamb shift or qed) Can BO electronic structure calculations be done this accurately? Variational rotation-vibration calculations with exact kinetic energy operator accurate to better than cm  1

mode E obs / cm -1 BO +  V ad  0.11   1.30    0.30   1.40   1.46   0.47    1.04    0.74  0.18 Ab initio vibrational band origins H2D+H2D+ H3+H3+ D2H+D2H+

mode E obs / cm  1 BO +  V ad  v   nuc  0.11   1.30    0.30   1.40   1.46  0.36   0.47  0.25    1.04    0.74  0.18  Ab initio vibrational band origins H2D+H2D+ H3+H3+ D2H+D2H+ O.L. Polyansky and J. Tennyson, J. Chem. Phys., 110, 5056 (1999).

J K a K c J K a K c E obs / cm -1 BO +  V ad  v   nuc + K NBO                                    H 2 D + : ab initio spectra

Obs / cm  1 5Z 1 6Z 1 CBS 2 CBS+CV 3 (010)  2.99  2.30  (020)  4.22  2.38  (030)  6.30  3.24  (040)  9.81  5.54  (050)   9.19  (101)  5.35 (201)  7.47 (301)  8.97 (401)  (501)   [104]  all  7.85 Ab initio calculations for water 1 MRCI calculation with Dunning’s aug-cc-pVnZ basis set 2 Extrapolation to Complete Basis Set (CBS) limit 3 Core—Valence (CV) correction OL Polyansky, AG Csaszar, J Tennyson, P Barletta, SV Shirin, NF Zobov, DW Schwenke & PJ Knowles Science, 299, 539 (2003)

BO / cm  1 +BODC 1 + Non-adiabatic  v   nuc 2 diag 3 full 4 (010)  0.46  0.19  0.06  0.07 (020)  0.94  0.38  0.12  0.15 (100)  0.55  0.46  0.72  0.70 (030)  1.43  0.55  0.18  0.23 (110)  0.16  0.65  0.77  0.76 (040)  2.00  0.71  0.23  0.30 (120)  0.23  0.83  0.83  0.84 (200)  1.25  0.88  1.39  1.37 (002)  1.47  0.90  1.47  1.57 (050)  2.71  0.84  0.28  0.32 Born-Oppenheimer corrections for water 1 Born-Oppenheimer diagonal correction using CASSCF wavefunction 2 Non-adiabatic correction by scaling vibrational mass,  V 3 Two parameter diagonal correction 4 Full treatment by Schwenke (J. Phys. Chem. A, 105, 2352 (2001).) J. Tennyson, P. Barletta, M.A. Kostin, N.F.Zobov, and O.L. Polyansky, Spectrachimica Acta A, 58, 663 (2002).

Ab initio predictions of water levels Isotopomer N(levels) J(max)  / cm  H 2 16 O H 2 17 O H 2 18 O D 2 16 O HD 16 O All water Rotational non-adiabatic effects very important

Residual sources of error Basis set convergence of MRCI: need extrapolated 7Z Full CI: contributes ~ 1 cm  at 25,000 cm  (?) Surface fitting: 346 points computed, need 1000 points, reduce  by ~ 0.2 cm  Full inclusion of non-adiabatic effects up to 25,000 cm -1