Can one measure the Neutrino Mass in the Double Beta Decay ?

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

I want thank Aldo Covello for the 11 Spring Seminars on Nuclear Physics in nice areas of the Sorrento Peninsula and the Islands. I was participating in.
: The mirror did not seem to be operating properly: A guide to CP violation C hris P arkes 12/01/2006.
Amand Faessler, München, 24. November Double Beta Decay and Physics beyond the Standard Model Amand Faessler Tuebingen Accuracy of the Nuclear Matrix.
Spectroscopy at the Particle Threshold H. Lenske 1.
Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
Penning-Trap Mass Spectrometry for Neutrino Physics
Amand Faessler, GERDA, 11. November Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines.
Amand Faessler, Tuebingen1 Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac.
Amand Faessler, 22. Oct Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the.
Description of Double Beta Decay, Nuclear Structure and Physics beyond the Standard Model - Status and Prospects. Amand Faessler University of Tuebingen.
SUMMARY – SESSION NU-3 ABSOLUTE NEUTRINO MASS SNOWMASS 2013, MINNEAPOLIS AUG 2, 2013 Hamish Robertson, University of Washington Convenors: Ben Monreal,
March 12, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
Amand Faessler, Tuebingen Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen 1. Solution of the Solar Neutrino Problem by SNO. 2. Neutrino.
K. Zuber, University of Sussex Neutrinoless double beta decay SUSSP 61, St. Andrews, 9-23 Aug
Lesson 8 Beta Decay. Beta-decay Beta decay is a term used to describe three types of decay in which a nuclear neutron (proton) changes into a nuclear.
Double beta decay nuclear matrix elements in deformed nuclei O. Moreno, R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra F. Šimkovic, A. Faessler.
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
0νββ nuclear matrix elements within QRPA and its variants W. A. Kamiński 1, A. Bobyk 1 A. Faessler 2 F. Šimkovic 2,3, P. Bene š 4 1 Dept. of Theor. Phys.,
Atmospheric Neutrino Anomaly
1 The elusive neutrino Piet Mulders Vrije Universiteit Amsterdam Fysica 2002 Groningen.
NEUTRINOLESS DOUBLE BETA DECAY ANGULAR CORRELATION AND NEW PHYSICS Dmitry Zhuridov Particles and Fields Journal club Department of Physics National Tsing.
Search for R-parity violating Supersymmetric effects in the neutron beta decay N. Yamanaka (Osaka University) 2009 年 8 月 12 日 at KEK In collaboration with.
Can the Neutrino tell us its Mass by Electron Capture? Amand Faessler University of Tuebingen; Heidelberg, MPI 20. May )Faessler, Gastaldo, Simkovic,
Massive neutrinos Dirac vs. Majorana
Search for the Cosmic Neutrino Background and the Nuclear Beta Decay (KATRIN). Amand Faessler University of Tuebingen Germany Publication: Amand Faessler,
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Weak Interactions and Supernova Collapse Dynamics Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Erice, September 21,
Search for the Cosmic Neutrino Background and the Nuclear Beta Decay (KATRIN). Amand Faessler, Rastislav Hodak, Sergey Kovalenko, Fedor Simkovic; Bad Honnef.
LBL 5/21/2007J.W. Holt1 Medium-modified NN interactions Jeremy W. Holt* Nuclear Theory Group State University of New York * with G.E. Brown, J.D. Holt,
XI th International Conference on Quark Confinement and the Hadron Petersburg, Russia Philipp Gubler (RIKEN, Nishina Center) Collaborator:
Double beta decay and neutrino physics Osaka University M. Nomachi.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Effect of thermal fluctuation of baryons on vector mesons and low mass dileptons ρ ω Sanyasachi Ghosh (VECC, Kolkata, India)
Can we look back to the Origin of our Universe? Cosmic Photon, Neutrino and Gravitational Wave Backgrounds. Amand Faessler, Erice September 2014 With thanks.
Search for the Cosmic Neutrino Background and the Nuclear Beta Decay.
We construct a relativistic framework which takes into pionic correlations(2p-2h) account seriously from both interests: 1. The role of pions on nuclei.
New era of neutrino physics 1.Atmospheric neutrino oscillations (in particular zenith angle dependence of the muon neutrino flux) 2. Solar neutrino deficit.
Open questions in  physics  : mechanism & EFT III. Neutrinos.
Compared sensitivities of next generation DBD experiments IDEA - Zaragoza meeting – 7-8 November 2005 C. Augier presented by X. Sarazin LAL – Orsay – CNRS/IN2P3.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Lecture 18: Total Rate for Beta Decay (etc...) 6/11/2003
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Double β-decay Process mediated by the weak interaction occurring in even-even nuclei where the single  -decay is energetically forbidden The role of.
Wednesday, Jan. 15, 2003PHYS 5396, Spring 2003 Jae Yu 1 PHYS 5396 – Lecture #2 Wednesday, Jan. 15, 2003 Dr. Jae Yu 1.What is a neutrino? 2.History of neutrinos.
„The uncertainty in the calculated nuclear matrix elements for neutrinoless double beta decay will constitute the principle obstacle to answering some.
Amand Faessler, Madrid, 8. June Double Beta Decay, a Test for New Physics Amand Faessler Tuebingen „The Nuclear Matrix Elements for the  are.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
Search for the Cosmic Neutrino Background and the Nuclear Beta Decay (KATRIN). Amand Faessler University of Tuebingen Germany Publication: Amand Faessler,
1 Atomic Mass Evaluation Meng WANG (王猛) CSNSM-CNRS, France MPIK-Heidelberg, Germany IMP-CAS, China 5 th FCPPL workshop.
Amand Faesler, University of Tuebingen, Germany. Short Range Nucleon-Nucleon Correlations, the Neutrinoless Double Beta Decay and the Neutrino Mass.
Unblocking of the Gamow-Teller Strength for Stellar Electron Capture
Kazuo Muto Tokyo Institute of Technology (TokyoTech)
Structure and dynamics from the time-dependent Hartree-Fock model
Neutrino Masses, Double Beta Decay and Nuclear Structure
The Physics of Neutrinos
Self-consistent theory of stellar electron capture rates
Amand Faessler, Erice September 2014
NOW 2006 Recent developments in Double Beta Decay Fedor Šimkovic
EXOTIC NUCLEAR STRUCTURE PHENOMENA the complex EXCITED VAMPIR approach
Amand Faessler University of Tuebingen
Medium polarization effects and transfer reactions in halo nuclei
University of Tuebingen,
Institut de Physique Nucléaire Orsay, France
Kazuo MUTO Tokyo Institute of Technology
Hyun Kyu Lee Hanyang University
A possible approach to the CEP location
Presentation transcript:

Can one measure the Neutrino Mass in the Double Beta Decay ? Fest-Colloquium for the 60. Birthday of Jochen Wambach. Can one measure the Neutrino Mass in the Double Beta Decay ? Amand Faessler, University of Tuebingen

FAESSLER; GSI 16. November 2010 Preparation for the legendary Football Game in Jülich against Solar Energy ~1977 Müther Baur Meyer ter Vehn Wambach FAESSLER; GSI 16. November 2010

The successful Nuclear Physics Football Team in Jülich-Broich ~1975 Müther, Grümmer Krewald Wambach Faessler Meyer ter V. K. W. Schmid Baur Osterfeld FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 Jochen Wambach * July 7. 1950 Studies at Univ. Bonn 1974-79 Dipl. + Ph. D. in Jülich/Bonn 1979-83 Stony Brook 1984-96 Univ. Illinois 1990 Full Prof. 1990-95 Univ. Bonn + Vice-Director Jülich 1996- Full Prof. TU Darmstadt 2004- Head Theory Group Hadrons + QCD at GSI. FAESSLER; GSI 16. November 2010

Honors and Service of Jochen Wambach 2003- Fellow of American Phys. Soc. 2002- 2008 Senat of DFG 2007- Editor: European J. of Phys. A 2007- Editor: Phys. Rev. Lett. Member of many National and International Committees. FAESSLER; GSI 16. November 2010

SPIRES: Famous Publication „Famous paper“ with 436 citations with R. Rapp:Chiral Symmetry Restoration and Dileptons in Relativistic HI Collisions. Published in Annals of Physics 2000. 1) Cooperstein, Wambach: Electron capture in Stellar Collaps ; Nucl. Phys. A420(1984) 2) Chanfray, Rapp, Wambach: Medium Modifications of the r Meson at SPS Energies; Phys. Rev. Lett. 76 (1996) FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 1) What triggers the presupernova stellar collaps? Wambach, Cooperstein. Nucl. P.A420(1984) Electrons Iron Core 26Fe30 Energy e- Protons Neutrons g9/2 P1/2 f5/2 Fermi Surface P3/2 f7/2 Bethe+Brown 1979: e- + p f7/2 n f5/2 + ne Fuller soon blocked 1982: n f5/2 full Wambach 1984: Thermal unblocking: p g9/2  n g9/2 ; p g9/2  n g7/2 FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 2) Propagation of the r-Meson in hot and dense Nuclear Matter (CERES Data) Wambach et al. Phys. Rev. Lett. 76 (1996)436 Model for r-Meson Model for r-Meson p-Meson p-Meson Pion propagation in hot and dense nuclear matter: p-Meson p-Meson N N-1 ; D N-1 ; N D-1 ; D D-1 FAESSLER; GSI 16. November 2010

Explanation of the CERES-Dilepton-Data CERN PPE 1995 Vector Meson Dominance r  g  e+ e- Modified r Bare r meson Mass of modified r-Meson FAESSLER; GSI 16. November 2010

Can one measure the Neutrino Mass in the 0n Double Beta Decay ? Fest-Colloquium for the 60. Birthday of Jochen Wambach July 7. 2010. Amand Faessler, University of Tuebingen

FAESSLER; GSI 16. November 2010 Sehr geehrte radioaktiven Damen und Herren: Invention of the Neutrino in a letter from Zuerich to Tuebingen on December 4th, 1930: Conservation of Energy and Angular Momentum in b-Decay. FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 Reines and Cowen and the Neutrino-Detection (1956 at Savanna River Reactor) FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 Detection of the Neutrino 1955/56: by Fred Reines and Clyde Cowen FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 1) Mainz + Troisk Triton Beta-Decay mn < 2.3 eV FAESSLER; GSI 16. November 2010

1)Mass of the Electron Neutrino? Tritium decay (Mainz + Troitsk) Mainz + Troisk Triton Beta-Decay mn < 2.3 eV FAESSLER; GSI 16. November 2010

Upper limit of Neutrino mass from the Mainz( Troisk) Experiment Results with Gaussian error 95 % confidence limit <m n> < 2.3 eV 5% <m neff>2 [eV2] -0.6 (2.3 eV)2 FAESSLER; GSI 16. November 2010

Tranformation from Mass to Flavor Eigenstates FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 A dinosaur on trip KATRIN Spectrometer tank on the way from the Rhine to the FZ Karslsruhe FAESSLER; GSI 16. November 2010

2) Neutrino Mass from Astrophysics: Density Distribution of Matter in the Universe (Power Spectrum of Matter Distribution) h = 0.71 FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 k = 2p/l [(h=0.71)/ Mpc] FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 W0 = 1.0 WL= 0.66 Wb= 0.04 H0 = 72[km/(sec*Mpc] ns = 0.94 Wn = 0 Cosmic Background Radiation 0.01 FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 W0 = 1.0 WL= 0.66 Wb= 0.04 H0 = 72 ns = 0.94 Wn = 0.05 0.01 FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 W0 = 1.0 WL= 0.66 Wb= 0.04 H0 = 72 ns = 0.94 Wn = 0.1 0.01 FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 W0 = 1.0 WL= 0.66 Wb= 0.04 H0 = 72 ns = 0.94 Wn = 0.25 0.01 FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 WMAP = Wilkinson Microwave Anisotropy Probe. ACBAR = Arcminute Cosmology Bolometer Array Receiver (Berkeley) CBI = Cosmic Background Imager (CALTEC) 2dFGRS = 2 degree Field Galaxy Redshift Survey FAESSLER; GSI 16. November 2010

3) Neutrino mass from Oνββ-Decay (forbidden in Standard Model) P e1 P Left ν Phase Space 106 x 2νββ Left n n n = nc Majorana Neutrino Neutrino must have a Mass FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass: FAESSLER; GSI 16. November 2010

Grand Unified left-right Symmetry Proton Proton Neutron Neutron Neutron Proton Neutron Proton Proton Neutron First and Third Diagram ~ Neutrino Mass Neutron Proton FAESSLER; GSI 16. November 2010

Supersymmetric Diagrams for the Neutrinoless Double Beta decay. Neutron Proton l‘111 Lightest SUSY Particle (LSP) c g~, h1~; h2~; W~ LSP c + g~ l‘111 Neutron Proton l‘111 FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 Theoretical Description of Nuclei: Vadim Rodin, Fedor Simkovic, Amand Faessler, Saleh Yousef k 0+ P P e2 k 1+ e1 k 2- ν Ek n n Ei 0+ 0+ 0νββ FAESSLER; GSI 16. November 2010

V. Rodin, F. Simkovic, S. Yousef, D. L. Fang, A. Escuderos The best choice: Quasi-Particle Random Phase Approximation (QRPA) and Shell Model QRPA starts with Pairing: V. Rodin, F. Simkovic, S. Yousef, D. L. Fang, A. Escuderos FAESSLER; GSI 16. November 2010

Neutrinoless Double Beta- Decay Probability FAESSLER; GSI 16. November 2010

Effective Majorana Neutrino-Mass for the 0nbb-Decay Tranformation from Mass to Flavor Eigenstates CP Time reversal CPT FAESSLER; GSI 16. November 2010

Neutrinoless Double Beta- Decay Probability FAESSLER; GSI 16. November 2010

QRPA (TUE), Shell Model (Madrid-Strasburg), IBM2, PHFB Different axial charges; gA Forces; Bonn CD; Argonne V18 Different Basis Sizes Short Range Correlations: Jastrow Fermi Hypernetted Unitary Correlator Operator Metod Brueckner QRPA and Renormalized-QRPA P-HFB-GCM PHFB+GCM

FAESSLER; GSI 16. November 2010 Rodriguez, Martinez-Pinedo: projected-HFB, Gogny force, GCM; arXiv1008.5260; beta(Nd) = 0.35; beta(Sm) = 0.21 Fang, Faessler, Rodin, Simkovic: Phys. Rev. C82, 051301 (2010) 150Nd b=0.24  150Sm: b= 0.15 <BCSi|BCSf> = 0.52; M0nbb = 3.16 FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 Rodriguez, Martinez-Pinedo Energy Density functional + Generator Coordinate Method FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 Quasi-Particle Random Phase Approach (QRPA; Tübingen). Shell Model Caurier et al. Angular Momentum Projected Hartee-Fock-Bogoliubov (Tübingen; P. K. Rath et al.; Rodriguez & Martinez-Pinedo+GCMb). Interacting Boson Model (Barea+Iachello) Which Angular Momentum Jp Neutron Pairs contribute to the Neutrinoless Double Beta decay? FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 QRPA all the Ring digrams: Ground State: 0, 4, 8, 12 , … quasi- particles (seniority) 4 8 b) The Shell Model Ground state: 0, 4, 6, 8, …. 6 Problem for SM: Size of the Single Particle Basis. FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 Additive Contributions of 0, 4, 6, … Quasi-Particle States in the SM (Poves et al.). 128Te Not in QRPA 82Se Increasing Admixtures in the Ground State FAESSLER; GSI 16. November 2010

Basis Size Effect for 82Se on the Neutrinoless Double Beta Decay. 4levels (Shell Model): 1p3/2, 0f5/2, 1p3/2, 0g9/2 4levels: Ikeda Sum rule 50 % 6levels: 0f7/2, 1p3/2, 0f5/2, 1p3/2, 0g9/2, 0g7/2; Ikeda 100% 9levels:0f7/2, 1p3/2, 0f5/2, 1p3/2, 0g9/2, 0g7/2, 1d5/2, 2s1/2, 1d3/2 FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 Contribution of Higher Angular Momentum Pairs in Projected HFB (Tübingen). HFB 0bbn Particle number and angular momentum projection before the variation; Gogny force; Axial symmetric deformation; No parity mixing; real coefficients of the Bogoliubov transformation IBM: = 0+ and 2+ Pairs FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 QRPA (TUE), Shell Model (Madrid-Strassburg), IBM2 (Iachello), PHFB (P. Rath) FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 HD claim for Detection of 0n DBD hep-ph/0512263 Exp.Heidelberg-Moscow: Klapdor and coworkers in Heidelberg claim, they have detected 0nbb of 76Ge Source = Detector 10.9 kg 86% enriched 76Ge from 8 % natGe in Russia Spectrum with 71.7 kg•y Q(0nbb) = 2038 keV FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 Neutrino Mass from 0nbb Experiment Heidelberg-Moskau: Klapdor‘s et al. Claim 76Ge Mod. Phys. Lett. A21,1547(2006) ; T(1/2; 0nbb) = (2.23 +0.44 -0.31) x 1025 years; 6s Matrix Elements: QRPA Tuebingen <m(n)> = 0.24 [eV] (exp+-0.02; theor+-0.01) [eV] FAESSLER; GSI 16. November 2010

FAESSLER; GSI 16. November 2010 Summary QRPA seems presently a reliable method Shell Model: to small basis IKEDA sum rule violated by 50% Projected Hartree Fock Bogoliubov: Pairing +Quadrupole and Gogny force; mainly 0+ neutron pairs change in proton pairs. Interacting Boson Model: Changes only s(0+) and d(2+) neutron pairs into protons pairs. To prove the mass mechanism is leading, one needs to measure several nuclear systems. Only if proved, the neutrino mass can be measured in the neutrinoless Double BetaDecay. THE END FAESSLER; GSI 16. November 2010