Angular Momentum Projection in TDHF Dynamics : application to Coulomb excitation and fusion C. Simenel 1,2 In collaboration with M. Bender 2, T. Duguet.

Slides:



Advertisements
Similar presentations
Spectroscopy at the Particle Threshold H. Lenske 1.
Advertisements

電気的に励起された 岩田順敬 ( 東大理 ) Cedric Simenel (CEA/Saclay) 原子核の時間発展 Thanks to: 大塚孝治 ( 東大理、東大 CNS 、理研 ) Michael Bender (CEA/Saclay)
CEA DSM Irfu Shell evolution towards 100 Sn Anna Corsi CEA Saclay/IRFU/SPhN.
Coulomb excitation with radioactive ion beams
CEA DSM Irfu 14 Oct Benoît Avez - [Pairing vibrations with TDHFB] - ESNT Workshop1 Pairing vibrations study in the Time-Dependent Hartree-Fock Bogoliubov.
NuPAC Physics at the proton and neutron drip lines Theoretical perspectives Angela Bonaccorso.
12 June, 2006Istanbul, part I1 Mean Field Methods for Nuclear Structure Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock- Bogoliubov Approaches.
Microscopic time-dependent analysis of neutrons transfers at low-energy nuclear reactions with spherical and deformed nuclei V.V. Samarin.
On the formulation of a functional theory for pairing with particle number restoration Guillaume Hupin GANIL, Caen FRANCE Collaborators : M. Bender (CENBG)
1 Multistep Coulomb & Nuclear Breakup of Halo Nuclei Ian Thompson, Surrey University, United Kingdom; with Surrey: Jeff Tostevin, John Mortimer, Brian.
Lawrence Livermore National Laboratory SciDAC Reaction Theory LLNL-PRES Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA
John Daoutidis October 5 th 2009 Technical University Munich Title Continuum Relativistic Random Phase Approximation in Spherical Nuclei.
Forces for extensions of mean-field PhD Thesis Marlène Assié Denis Lacroix (LPC Caen), Jean-Antoine Scarpaci (IPN Orsay)  Extensions of mean-field ? 
Double beta decay nuclear matrix elements in deformed nuclei O. Moreno, R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra F. Šimkovic, A. Faessler.
Le groupe des francophones Heirs of P. Bonche, H Flocard, D Vautherin, … with still two ancestors: P-H Heenen and J. Meyer and many young people: M Bender.
Relative kinetic energy correction to fission barriers 1. Motivation 2. Results for A= systems 3. A cluster model perspective 4. Prescription based.
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
Fission fragment properties at scission:
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Reactions Categorization of Nuclear Reactions According to: bombarding.
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS
CEA Bruyères-le-ChâtelESNT 2007 Fission fragment properties at scission: An analysis with the Gogny force J.F. Berger J.P. Delaroche N. Dubray CEA Bruyères-le-Châtel.
M. Girod, F.Chappert, CEA Bruyères-le-Châtel Neutron Matter and Binding Energies with a New Gogny Force.
Zbigniew Chajęcki National Superconducting Cyclotron Laboratory Michigan State University Probing reaction dynamics with two-particle correlations.
Quantum Monte-Carlo for Non-Markovian Dynamics Collaborator : Denis Lacroix Guillaume Hupin GANIL, Caen FRANCE  Exact  TCL2 (perturbation)  TCL4  NZ2.
Time-dependent Hartree Fock with full Skyrme Forces in 3 Dimensions Collaborators: P.-G. Reinhard, U. Erlangen-Nürnberg P. D. Stevenson, U. Surrey, Guildford.
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1 Nuclear Reactions Sample.
Nuclear Structure and dynamics within the Energy Density Functional theory Denis Lacroix IPN Orsay Coll: G. Scamps, D. Gambacurta, G. Hupin M. Bender and.
Stochastic quantum dynamics beyond mean-field. Denis Lacroix Laboratoire de Physique Corpusculaire - Caen, FRANCE Introduction to stochastic TDHF Application.
Stochastic methods beyond the independent particle picture Denis Lacroix IPN-Orsay Collaboration: S. Ayik, D. Gambacurta, B. Yilmaz, K. Washiyama, G. Scamps.
Nuclear deformation in deep inelastic collisions of U + U.
Wolfram KORTEN 1 Euroschool Leuven – September 2009 Coulomb excitation with radioactive ion beams Motivation and introduction Theoretical aspects of Coulomb.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
A new statistical scission-point model fed with microscopic ingredients Sophie Heinrich CEA/DAM-Dif/DPTA/Service de Physique Nucléaire CEA/DAM-Dif/DPTA/Service.
ESNT Saclay February 2, Structure properties of even-even actinides at normal- and super-deformed shapes J.P. Delaroche, M. Girod, H. Goutte, J.
Yoritaka Iwata 1 and Takaharu Otsuka 1,2 Reaction mechanism in neutron-rich nuclei 1 Department of Physics, University of Tokyo Advices about using TDHF.
FUSTIPEN-GANIL OCTOBER 13, 2014 Quantal Corrections to Mean-Field Dynamics Sakir Ayik Tennessee Tech University Stochastic Mean-Field Approach for Nuclear.
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
Héloïse Goutte CERN Summer student program 2009 Introduction to Nuclear physics; The nucleus a complex system Héloïse Goutte CEA, DAM, DIF
Fission Collective Dynamics in a Microscopic Framework Kazimierz Sept 2005 H. Goutte, J.F. Berger, D. Gogny CEA Bruyères-le-Châtel Fission dynamics with.
Lawrence Livermore National Laboratory Physical Sciences Directorate/N Division The LLNL microscopic fission theory program W. Younes This work performed.
T=0 Pairing in Coordinate space Workshop ESNT, Paris Shufang Ban Royal Institute of Technology (KTH) Stockholm, Sweden.
Nucleon DIffusion in Heavy-Ion Collisions
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Fusion of light halo nuclei
Lawrence Livermore National Laboratory Daniel Gogny’s Vision for a Microscopic Theory of Fission DRAFT Version 1 First Gogny Conference, December 2015.
Left-handed Nuclei S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden, Germany.
F. C HAPPERT N. P ILLET, M. G IROD AND J.-F. B ERGER CEA, DAM, DIF THE D2 GOGNY INTERACTION F. C HAPPERT ET AL., P HYS. R EV. C 91, (2015)
Nuclear density functional theory with a semi-contact 3-body interaction Denis Lacroix IPN Orsay Outline Infinite matter Results Energy density function.
Triaxiality in nuclei: Theoretical aspects S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden,
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
Neutrons correlations viewed through nuclear break-up  Theory beyond mean field to describe influence of correlations on dynamics  Nuclear break-up of.
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
Gogny-TDHFB calculation of nonlinear vibrations in 44,52 Ti Yukio Hashimoto Graduate school of pure and applied sciences, University of Tsukuba 1.Introduction.
Yoritaka Iwata 1, Naoyuki Itagaki 2, Takaharu Otsuka 1,2,3 1 Department of Physics, University of Tokyo. 2 CNS, University of Tokyo. 3 RIKEN. Competitive.
1 Z.Q. Feng( 冯兆庆 ) 1 G.M. Jin( 靳根明 ) 2 F.S. Zhang ( 张丰收 ) 1 Institute of Modern Physics, CAS 2 Institute of Low Energy Nuclear Physics Beijing NormalUniversity.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Dynamics of complex quantum systems Denis Lacroix –CNRS-GANIL ESNT “Les Jeunots…”, Saclay 4-7 Feb Phenomenology of nuclear reactions.
V. Nuclear Reactions Topics to be covered include:
Fusion of 16,18O + 58Ni at energies near the Coulomb barrier
Nuclear structure far from stability
Beyond mean-field methods: why and how
Nuclear Structure Tools for Continuum Spectroscopy
Structure and dynamics from the time-dependent Hartree-Fock model
Low energy nuclear collective modes and excitations
Microscopic studies of the fission process
The continuum time-dependent Hartree-Fock method for Giant Resonances
Breakup of weakly bound nuclei and its influence on fusion
A self-consistent Skyrme RPA approach
Presentation transcript:

Angular Momentum Projection in TDHF Dynamics : application to Coulomb excitation and fusion C. Simenel 1,2 In collaboration with M. Bender 2, T. Duguet 2, F. Nunes 2 1) CEA-SPhN, Saclay 2) MSU/NSCL, US

Motivations Nuclear reactions elastic, inelastic, deep-inelastic, transfer, break-up, fusion, fission… Coulomb + nuclear interactions, couplings, multistep process, tunnel effect… Whole nuclear chart from light to superheavy elements from proton to neutron drip lines Fully microscopic theory effective interaction (Skyrme, Gogny…) Beyond mean-field long range dynamical correlations mixing of trajectories

Present status Time dependent mean field Time-Dependent Hatree-Fock theory P.A.M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930) First application to nuclear physics Y.M. Engel et al., NPA 249, 215 (1975) P. Bonche, S. Koonin and J.W. Negele, PRC 13, 1226 (1976) 3D calculations of nuclear reactions H. Flocard, S.E. Koonin and M.S. Weiss, PRC 17, 1682 (1978) K.-H. Kim, T. Otsuka and P. Bonche, JPG 23, 1267 (1997) C. S., P. Chomaz and G. de France, PRL 86, 2971 (2001) C. S., P. Chomaz and G. de France, PRL 93, (2004) no pairing (except QRPA)

Present status Beyond time dependent mean field Extended TDHF D. Lacroix, P. Chomaz and S. Ayik, PRC 58, 2154 (1998) Time Dependent Density Matrix S.J. Wang and W. Cassing, Ann. Phys. 159, 328 (1985) M. Tohyama, PRC 36, 187 (1987) Stochastic TDHF O. Juillet and P. Chomaz, PRL 88, (1998) Time Dependent Generator Coordinate Method P.-G. Reinhard, R.Y. Cusson and K. Goeke, NPA 398, 141 (1983) J.F. Berger, M. Girod and D. Gogny, NPA 428, 23c (1984) H. Goutte, J.F. Berger, P. Casoli and D. Gogny, PRC 71, (2005) Projected TDHF (present work)

Today's objectives: reactions with a deformed projectile effect of the initial orientation on the reaction  many TDHF trajectories Coulomb excitation (rotation) angular momentum projection to calculate the J-population Interferences between initial orientations Fusion incoherent mixing of TDHF trajectories  realistic fusion probability (between 0 and 1) Effect of Coulomb excitation in the approach

I) Projected TDHF : formalism A) Projection on angular momentum static case angular momentum "projector": rotated Slater determinant: evolution no feed back of the correlations - on the Slater evolution  TDHF trajectories - on the superposition functions  f(  ) is constant  initial state correlations in the observation only

I) Projected TDHF : formalism B) Projection on angular momentum exact J-population we use  high computationnal cost approximated J-population  accurate if the vibration and the rotational speed are small

I) Projected TDHF : formalism C) The code: symmetries and numerical tests initial condition: isotropic distribution of (J=0) axial symmetry of  small impact parameter or small dynamical deformation of  (t) or sudden approximation the HF g.s. has an axial symmetry, a time-reversal symmetry and a good parity the evolved Slater determinants have a plane of symmetry  only one collision partner can be deformed no charge mixing in the s.p. wave functions

I) Projected TDHF : formalism C) The code: symmetries and numerical tests explicit expression of the JM-population - exact with and - approximated

I) Projected TDHF : formalism C) The code: symmetries and numerical tests orthonormalization: convergence with the number of rotational angles 1- | ‹0|0› |, | ‹J|0› |

II) Coulomb excitation : rotational band A) Classical calculation rotation due to Coulomb repulsion effects on induced fission 130 Xe U (E<B)    f(D) D Theoretical calculation Holm et al., PLB 29, 473 (1969)

II) Coulomb excitation : rotational band A) Classical calculation K.Alder and A. Winther, Electromagnetic Excitation (1978) C. S., P. Chomaz and G. de France, PRL 93, (2004) - point like target - small - small - differential equation : with and - solution : - reorientation (  =1) :  Z 1, A 1 Z 2, A 2 D

II) Coulomb excitation : rotational band B) TDHF approach self consistent mean field theory independant s.p. wave functions mean values of one body observables (ex : orientation) quantal treatment of inertia P. Bonche code K.-H. Kim, T. Otsuka and P. Bonche, JPG 23, 1267 (1997)  deformed projectile + Coulomb potential of the target Skyrme forces (SLy4d) T. Skyrme, Phil. Mag. 1 (1956)

II) Coulomb excitation : rotational band B) TDHF approach 24 Mg (+ 208 Pb) E CM = 112 MeV (≈B) D init. = 220fm head on collision` Rutherford trajectory approach phase only

II) Coulomb excitation : rotational band B) TDHF approach 24 Mg (+ 208 Pb)  ∞ = 45 deg. population of J ? C. S., P. Chomaz and G. de France, PRL 93, (2004) D0D0  ∞ = 45

II) Coulomb excitation : rotational band C) PTDHF: excitation probability set of projected states - A. Valor, P.-H. Heenen and P. Bonche, NPA 671, 145 (2003) - M. Bender, H. Flocard and P.-H.Heenen, PRC 68, (2003) et al., 24 Mg

II) Coulomb excitation : rotational band C) PTDHF: excitation probability time evolution of the J-population 24 Mg (+ 208 Pb) E CM = 112 MeV (≈B) head on collision approaching phase only Time (fm/c) P J (t)

II) Coulomb excitation : rotational band C) PTDHF: excitation probability 24 Mg (+ 208 E CM =690 MeV ~ 6B angular distribution interferences between orientations still need nuclear potential (target) and interferences between scattering angles P J (t  ∞) c.m. scattering angle (deg.) J=2 J=0 Semi-classical PTDHF "improved" TDHF

III) Fusion of deformed nuclei at the barrier 24 Mg MeV head-on collision initial distance: 20 fm the fusion probability depends on the initial orientation

III) Fusion of deformed nuclei at the barrier 24 Mg+ 208 Pb initial distance: 20 fm  no long range Coulomb excitation Isotropic model : red line  B 0 ~ 97 MeV  ~ 0.06 ~  SLy4d /2 barrier ~ 10% lower than expected (collision term ?) CM Energy (MeV) Orientation  at 20fm FUSION SCATTERING 0  /4  /2

III) Fusion of deformed nuclei at the barrier Fusion probability - Isotropic distribution at D=20fm : blue line - Isotropic distribution at D=220fm : red points reduction of the fusion due to Coulomb excitation no concluding effect of nuclear excitation on the fusion probability P fus P fus /P 0 E CM (MeV)

Conclusions and perspectives PTDHF approximated angular momentum projection on TDHF trajectories beyond mean field for the observation, ex: P J (t) Coulomb excitation  strong effect of the interferences fusion  reduction of the fusion due to Coulomb excitation  exact projection  interferences between scattering angles  effect of interferences (orientations) on fusion ?  feed back of the correlations on the evolution  TDGCM  pairing (TDHF)

annexe

Plan I) Projected TDHF: Formalism Time Dependent Generator Coordinate Method Projection on angular momentum The code: symmetries and numerical tests II) Coulomb excitation: 24Mg rotationnal band Classical calculation TDHF approach PTDHF: excitation probability III) Fusion of deformed nuclei at the barrier Rotationnal couplings in the entrance channel Beyond mean field results IV) Conclusions and perspectives

I) Projected TDHF : formalism A) TDGCM wave function q: collective variable f : superposition function  : Slater determinant P.-G. Reinhard et al.  (t)   TDHF (t) J.F. Berger et al. + H. Goutte et al.  (t)   HFB time dependent Griffin-Hill-Wheeler equation

I) Projected TDHF : formalism C) The code: symmetries and numerical tests explicit expression of the JM-population - exact with and - approximated - without interferences

I) Projected TDHF : formalism C) The code: symmetries and numerical tests test of the overlap between Slater determinants

24 Mg (+ 208 E CM =690 MeV ~ 6B