Koji Murakawa (ASTRON) B. Tubbs, R. Mather, R. Le Poole, J. Meisner, E. Bakker (Leiden), F. Delplancke, K. Scale (ESO) Conceptual Design Review for PRIMA.

Slides:



Advertisements
Similar presentations
Optics, Eugene Hecht, Chpt. 8
Advertisements

What is HiCIAO ? Near-infrared high contrast imaging instrument with a linear polarimetor at the 8.2m Subaru telescope. Targets: exoplanets and proto-planetary.
Geometrical analysis of Young’s Double Slit Experiment:
A Crash Course in Radio Astronomy and Interferometry: 2
Fast & Furious: a potential wavefront reconstructor for extreme adaptive optics at ELTs Visa Korkiakoski and Christoph U. Keller Leiden Observatory Niek.
Direct determination of asteroids sizes and shapes by Mid-IR interferometry Sebastiano Ligori INAF – Osservatorio Astronomico di Torino, Italy.
Changing the Phase of a Light Wave. A light wave travels a distance L through a material of refractive index n. By how much has its phase changed?
Air Force Technical Applications Center 1 Subspace Based Three- Component Array Processing Gregory Wagner Nuclear Treaty Monitoring Geophysics Division.
Optics in Astronomy - Interferometry - Oskar von der Lühe Kiepenheuer-Institut für Sonnenphysik Freiburg, Germany.
Error budget for the PRIMA conceptual design review Bob Tubbs, Richard Mathar, Murakawa Koji, Rudolf Le Poole, Jeff Meisner and Eric Bakker Leiden University.
Astronomical Institute University of Bern 64 th International Astronautical Congress September 2013, Beijing, China Assessment of possible observation.
10 -3 versus polarimetry: what are the differences? or Systematic approaches to deal with systematic effects. Frans Snik Sterrewacht Leiden.
Light and Optics 4.1 Mirrors form images by reflecting light. 4.2
Lecture 24 Physics 2102 Jonathan Dowling EM waves Geometrical optics.
PRIMA Astrometry Calibration and Operation Plan PRIMA Astrometry Calibration and Operation Plan VLT-PLA-AOS draft Scope of the Document 
Optics in Astronomy - Interferometry - Oskar von der Lühe Kiepenheuer-Institut für Sonnenphysik Freiburg, Germany.
Polarization Calibration of HMI A. Norton, J. Schou, D. Elmore, J. Borrero, S. Tomczyk, G. Card + High Altitude Observatory National Center for Atmospheric.
BDT Radio – 2a – CMV 2009/10/06 Basic Detection Techniques 2a (2009/10/06): Array antennas Theory: interferometry & synthesis arrays Introduction Optical.
30 September 2004PRIMA AOS CDR1 Data reduction library I. requirements Eric Bakker I. Requirements II. Design (Jeroen) III. Implementation (Jeroen) IV.
PRIMA Astrometry Object and Reference Selection Doc. Nr. VLT-PLA-AOS Astrometric Survey for Extra-Solar Planets with PRIMA J.Setiawan & R. Launhardt.
Chapter 25: Interference and Diffraction
Chapter 18 Superposition and Standing Waves. Waves vs. Particles Waves are very different from particles. Particles have zero size.Waves have a characteristic.
Diffraction vs. Interference
Cophasing activities at Onera
Use of GPS RO in Operations at NCEP
ECE 8443 – Pattern Recognition ECE 8423 – Adaptive Signal Processing Objectives: Introduction SNR Gain Patterns Beam Steering Shading Resources: Wiki:
Infrasound detector for Apatity group Asming V.E., Kola Regional Seismological Center, Apatity, Russia.
IPBSM status and plan ATF project meeting M.Oroku.
Polarization Calibration of the Daniel K Inouye Solar Telescope (DKIST) formerly Advanced Technology Solar Telescope David Elmore Instrument Scientist.
The Role of Interferometers in Future Space Astrophysics Missions Ron Allen Space Telescope Science Institute Synthesis Imaging Scientist Space Interferometry.
The SDS, and Variations of the Solar Diameter: Flight 11 (October 16, 2009) Sabatino Sofia Yale University New Haven, CT, USA.
The Hong Kong Polytechnic University Optics 2----by Dr.H.Huang, Department of Applied Physics1 Diffraction Introduction: Diffraction is often distinguished.
Wave superposition If two waves are in the same place at the same time they superpose. This means that their amplitudes add together vectorially Positively.
Difference of Optical Path Length Interference Two waves One wave Many waves Diffraction.
1 The slides in this collection are all related and should be useful in preparing a presentation on SIM PlanetQuest. Note, however, that there is some.
Lecture 18 Optical Instruments
SITE PARAMETERS RELEVANT FOR HIGH RESOLUTION IMAGING Marc Sarazin European Southern Observatory.
Optical Holography Martin Janda, Ivo Hanák Introduction Wave Optics Principles Optical holograms Optical Holography Martin Janda, Ivo Hanák Introduction.
Lecture Nine: Interference of Light Waves: I
MIDI design, performance, operations, and science Markus Schöller (INS)
Chapter 15 Preview Objectives Combining Light Waves
Phase Referenced Imaging and Micro-arsec Astrometry (PRIMA) an introduction to technical description and development Tuesday June 4, 2002 Frédéric Derie,
FGS Astrometry in 2 Gyro Mode E. P. Nelan STScI B. E. McArthur McDonald Observatory, U. of Texas.
1 Fraunhofer Diffraction: Circular aperture Wed. Nov. 27, 2002.
Like other waves, light waves can add constructively and destructively as shown above. Examples: –Colors seen in soap bubbles –Colors seen in a thin film.
The Self-Coherent Camera: a focal plane wavefront sensor for EPICS
Lecture 14. Radio Interferometry Talk at Nagoya University IMS Oct /43.
College of Optical Sciences The University of Arizona Study of birefringence effect on Fizeau interferometry: analytical and simulation results Chunyu.
Charts for TPF-C workshop SNR for Nulling Coronagraph and Post Coron WFS M. Shao 9/28/06.
24 September 2001ATNF Imaging Workshop1 The Sydney University Stellar Interferometer (SUSI) John Davis School of Physics University of Sydney 24 September.
Observations with AMBER  General overview  P2VM  OB preparation with P2PP P2PP / OB / templates Available templates for observation procedure Typical.
INS SW Workshop, Garching 8 October, 2008 Andrea Richichi European Southern Observatory.
Chapter 25 Wave Optics.
Extra Solar Planet Science With a Non Redundant mask
Pre-launch Characteristics and Calibration
Extra Solar Planet Science With a Non Redundant mask
Measuring Birefringence of Anisotropic Crystals
Wave superposition If two waves are in the same place at the same time they superpose. This means that their amplitudes add together vectorially Positively.
PRESENTATION ON MEASUREMENT AND GAUGING
How to Use This Presentation
Absence of Impact Polarization in H
Observational Astronomy
Observational Astronomy
Diffraction vs. Interference
Observational Astronomy
Introduction to Difmap
Two-beam interference:
Ordinary light versus polarized light
Measurements of the wave-front outer scale at Paranal
Understanding Sun-NP Data
Presentation transcript:

Koji Murakawa (ASTRON) B. Tubbs, R. Mather, R. Le Poole, J. Meisner, E. Bakker (Leiden), F. Delplancke, K. Scale (ESO) Conceptual Design Review for Center, Leiden on 29 Sep., 2004 PRIMA Astrometric Observations Polarization effects Technical Report AS-TRE-AOS Frosty LeoCW Leo

- OUTLINE - 1. Introduction Why instrumental polarization analysis? 2. Effects of phase error on astrometry Operation principle of the FSU 3. Polarization properties of PRIMA optics Basic concepts of polarization model

Introduction Why instrumental polarization analysis?  changes phase and amplitude VLT telescope, StS, base line, etc (telescope pointing, separation, station…)  the fringe sensor unit detects a wrong phase delay.  provide an error in astrometry what kind of error? (<  /100?)

What we have to do? Establish a strategy of analysis  Study the operation principle of FSU  Make a polarization model of VLTI optics Analysis  Fringe detection by FSU  polarization model analysis of VLTI optics  telescope, StS, base line optics  time evolution (as a function of hour angle)  difference between the ref. and the obj.

The Operation Principle of the Fringe Sensor Unit Alenia Co., VLT-TRE-ALS

The original ABCD Algorithm Complex Amplitude E A = -  (P 1 -P 2 ) E B =  (S 1 +S 2 ) E C =  (P 1 +P 2 ) E D = -  (S 1 -S 2 ) Identical polarization S 1 = expi(kL opl,1 ) S 2 = expi(kL opl,2 ) P 1 = expi(kL opl,1 ) P 2 = expi(kL opl,2 +  /2) k: wave number (k=2  / ) L opl,i : optical path length at the station i

The original ABCD Algorithm ABCD signals I A = 2|  | 2 {1+sin(kL opd )} I B = 2|  | 2 {1+cos(kL opd )} I C = 2|  | 2 {1-sin(kL opd )} I D = 2|  | 2 {1-cos(kL opd )} Visibility V = 1/2(I A +I B +I C +I D )=4|  | 2 Phase delay  = kL opd = arctan(I A -I C /I B -I D ) L opd : optical path difference L opd = L opl,1 - L opl,2 The phase delay can be measured with a simple way.

The original ABCD Algorithm Complex Amplitude E A = -  (P 1 -P 2 ) E B =  (S 1 +S 2 ) E C =  (P 1 +P 2 ) E D = -  (S 1 -S 2 ) Different polarization S 1 = S 1 expi(kL opl,1 ) S 2 = S 1 expi(kL opl,2 ) P 1 = P 1 expi(kL opl,1 ) P 2 = P 1 expi(kL opl,2 +  /2) k: wave number (k=2  / ) L opl,i : optical path length at the station i

The original ABCD Algorithm ABCD signals I A = 2|  P 1 | 2 {1+sin(kL opd )} I B = 2|  S 1 | 2 {1+cos(kL opd )} I C = 2|  P 1 | 2 {1-sin(kL opd )} I D = 2|  S 1 | 2 {1-cos(kL opd )} Visibility V = 1/2(I A +I B +I C +I D ) = 2|  | 2 (|P 1 | 2 +|S 1 | 2 ) Phase delay  = kL opd = arctan(I A -I C /I A +I C * I B +I D /I B -I D ) L opd : optical path difference L opd = L opl,1 - L opl,2 The phase delay can be measured not affected by different polarization status between S and P.

A Modified ABCD Algorithm Complex Amplitude E A = -  (P 1 -P 2 ) E B =  (S 1 +S 2 ) E C =  (P 1 +P 2 ) E D = -  (S 1 -S 2 ) Different polarization S 1 = S 1 expi(kL opl,1 ) S 2 = S 2 expi(kL opl,2 ) P 1 = P 1 expi(kL opl,1 +  S ) P 2 = P 2 expi(kL opl,2 +  P +  /2) Different polarization between beam 1 and 2 phase  S =  S,2 -  S,1, and  P =  P,2 -  P,1 amplitude S 2 ≠S 1, P 2 ≠P 1

A Problem on the ABCD Algorithm ABCD signals I A = |  | 2 {P 1 2 +P P 1 P 2 sin(kL opd +  P )} I B = |  | 2 {S 1 2 +S S 1 S 2 cos(kL opd +  S )} I C = |  | 2 {P 1 2 +P P 1 P 2 sin(kL opd +  P )} I D = |  | 2 {S 1 2 +S S 1 S 2 cos(kL opd +  S )} The ABCD algorithm tells a wrong phase delay.

A Modified ABCD Algorithm Get another sampling with a  /2(= /4) step I A0 = |  | 2 {P 1 2 +P P 1 P 2 sin(kL opd +  P )} I A1 = |  | 2 {P 1 2 +P P 1 P 2 cos(kL opd +  P )} I C0 = |  | 2 {P 1 2 +P P 1 P 2 sin(kL opd +  P )} I C1 = |  | 2 {P 1 2 +P P 1 P 2 cos(kL opd +  P )} only P-polarization is described above. assume fixed P 1 and P 2

A Modified ABCD Algorithm & Polarization Effects Phase delay  P = kL opd +  P = arctan(I A0 -I C0 /I A1 +I C1 )  S = kL opd +  S = arctan(I B0 -I D0 /I B1 +I D1 ) The FSU may correct (detect) 1/2(  P +  S ) = kL opd +1/2(  P +  S ) Instrumental polarization between two beams cannot be principally corrected. a phase delay of |  S -  P | still remains.

Impact on Astrometry - Polarization Effects on Object - Visibility of the object V = = E S,1 = S 1 expi(kL opl,1 ’) E S,2 = S 2 expi(kL opl,2 ’+  S ’) E P,1 = P 1 expi(kL opl,1 ’+  SP ’) E P,2 = P 2 expi(kL opl,2 ’+  SP ’+  P ’)

Impact on Astrometry - Polarization Effects on Object - Cross correlation + = 2S 1 S 2 + = 2S 1 P 1 + = 2S 1 P 2 + = 2S 2 P 1 + = 2S 2 P 2 + = 2P 1 P 2

Impact on Astrometry - Polarization Effects on Object - Visibility of the unpolarized object V = = Because of =0….unpolarized light Astrometry of the unpolarized object k(L opd -L opd ’)+{(  S -  P )-(  S ’-  P ’)} = kL BL sin  +{(  S -  P )-(  S ’-  P ’)} …  : astrometry

Impact on Astrometry - Summary - 1.Operation principle of FSU  Phase delay measurement not affected by polarization status of the reference.  A modified ABCD algorithm to calibrate instrumental polarization 2. Impact on astrometry  {(  S -  P )-(  S ’-  P ’)} gives error in astrometry  Similar beam combiner to the FSU is encouraged to science instrument

Polarization Model Optics can work as a phase retarder or a polarizer S o = J S i … S: Stokes parm, J: Jones matrix S f = J N J N-1 …J 1 S * Grouping J tel (Az(h), El(h), r, ,, St): telescope optics J StS (r, , ): star separator optics J BL (, St): base line optics Model S f = J BL J StS J tel S *

Future Activities 1. Telescope optics (J tel ) time evolution: |  S -  P |(h, Dec, r,  ) 2. Star separator optics (J StS ) |  S -  P |(r) 3. Base line optics (J BL ) |  S -  P |(St) 4. Color dependence  opd ( ), I x ( group delay