Water monomer linelists Matt Barber Jonathan Tennyson Department of Physics and Astronomy University College London December 2009.

Slides:



Advertisements
Similar presentations
Progress Towards Theoretical Spectra of the Water Dimer Ross E. A. Kelly, Matt Barber, & Jonathan Tennyson Department of Physics & Astronomy University.
Advertisements

Simulating the spectrum of the water dimer in the far infrared and visible Ross E. A. Kelly, Matt J. Barber, Jonathan Tennyson Department of Physics and.
Preliminary Results for Water Dimer Spectroscopy Simulations Ross E. A. Kelly, Matt J. Barber, and Jonathan Tennyson Department of Physics and Astronomy.
1 Water vapour self-continuum: Recent update from Reading/RAL Semi-annual CAVIAR meeting UCL, London Igor Ptashnik, Keith Shine, Andrey Vigasin.
1 Water vapour self-continuum: Recent interpretation Igor Ptashnik, Keith Shine, Andrey Vigasin University of Reading (UK) Zuev Institute of Atmospheric.
1 Annual CAVIAR meeting, , Imperial College London Water vapour continuum absorption in near- and middle-IR: Recent investigations Department.
Best spectral regions: ARIES & TAFTS Up-Down, at 4 km Downwelling, at 4 km 1) I err = I* ( I Lines *2 ) 0.5 W/(m 2 * cm -1 ) 2) Surface.
1 Analysis of BBCRDS Spectra: Inferred Upper Limits for Water Dimer Absorption A.J.L. Shillings 1, S.M. Ball 2 and R.L. Jones 1 1 University of Cambridge,
BBCRDS Measurements of Water Vapour: Inferred Upper Limits for Water Dimer Absorption in the 610 and 750 nm regions A.J.L. Shillings 1, S.M. Ball 2 and.
CAVIAR meeting May, 13, 2010 – UCL, London 1/11 Cambridge Centre for Atmospheric Science Broad Band Cavity Enhanced Absorption Spectroscopy of the Water.
Modelling Water Dimer Band Intensities and Spectra Matt Barber Jonathan Tennyson University College London 10 th February 2011
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London 13 th May 2010
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London December 2008.
The HITRAN Molecular Database
The IUPAC water vapour database Jonathan Tennyson HITRAN meeting Department of Physics and Astronomy Harvard University College London June 2008.
Spectral shapes modeling and remote sensing of greenhouse gases. Toward the OCO and GOSAT experiments and future HITRAN issues.
Georg Wagner, Manfred Birk Remote Sensing Technology Institute (IMF) Deutsches Zentrum für Luft- und Raumfahrt (DLR) Shepard A. Clough Clough Radiation.
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
A L INE L IST FOR H YDROGEN S ULPHIDE (H 2 S) Ala’a A. A. Azzam J. Tennyson and S. Yurchencko Department of Physics and Astronomy, University College London,
A database for water transitions from experiment and theory Jonathan Tennyson HITRAN meeting Department of Physics and Astronomy Harvard University College.
* The number of transitions listed in this column are for the equivalent number of isotopologues and spectral range consistent with HITEMP2010 Comparison.
High-Lying Rotational Levels of Water obtained by FIR Emission Spectroscopy L. H. Coudert, a M.-A. Martin, b O. Pirali, b D. Balcon, b and M. Vervloet.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
PRESSURE BROADENING AND SHIFT COEFFICIENTS FOR THE BAND OF 12 C 16 O 2 NEAR 6348 cm -1 D. CHRIS BENNER and V MALATHY DEVI Department of Physics,
Some Details of the Upcoming HITRAN Updates for the New Edition of 2008 Laurence S. Rothman, Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics,
Modelling Water Dimer Band Intensities and Spectra Matt Barber Jonathan Tennyson University College London 29 th September 2010
Towards Theoretical Spectroscopy of the Water Dimer Ross E. A. Kelly, Matt J. Barber, and Jonathan Tennyson Department of Physics and Astronomy UCL Gerrit.
CAVIAR Meeting September ASSESSMENT OF H 2 O LINE INTENSITIES.
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
Jet Propulsion Laboratory California Institute of Technology 1 V-1 11 th HITRAN Conference, Cambridge, MA, June 16-18, 2010 The importance of being earnest.
Simulating the spectrum of the water dimer in the far infrared and visible Ross E. A. Kelly, Matt J. Barber, Jonathan Tennyson Department of Physics and.
Observations of SO 2 spectra with a quantum cascade laser spectrometer around 1090 and 1160 cm -1. Comparison with HITRAN database and updated calculations.
Current CAVIAR activities at Cambridge A.J.L. Shillings 1, S.M. Ball 2 and R.L. Jones 1 1 University of Cambridge, Department of Chemistry, Lensfield Road,
Theoretical work on the water monomer Matt Barber Jonathan Tennyson University College London
Molecular Databases: Evolution and Revolution Laurence S. Rothman Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics.
High-accuracy ab initio water line intensities Lorenzo Lodi University College London Department of Physics & Astronomy.
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
Towards perfect water line intensities Lorenzo Lodi University College London, Dept of physics & Astronomy, London, UK.
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
ACE Spectroscopy for the Atmospheric Chemistry Experiment (ACE) Chris Boone, Kaley Walker, and Peter Bernath HITRAN Meeting June, 2010.
Hot summer of HITRAN2008 I. E. Gordon L. S. Rothman.
Theoretical Modelling of the Water Dimer: Progress and Current Direction Ross E. A. Kelly, Matt Barber, & Jonathan Tennyson Department of Physics & Astronomy.
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
The IUPAC Critical Evaluation of the Ro-vibrational Spectra of Water Vapor: Results for H 2 18 O, H 2 17 O, and HD 16 O Jonathan Tennyson University College.
Predicting half-widths and line shifts for water vapor transitions on the HITEMP database Robert R. Gamache a, Laurence S. Rothman b, and Iouli E. Gordon.
Xinchuan Huang, 1 David W. Schwenke, 2 Timothy J. Lee 2 1 SETI Institute, Mountain View, CA 94043, USA 2 NASA Ames Research Center, Moffett Field, CA 94035,
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
Evaluation of the Experimental and Theoretical Intensities of Water- Vapor Lines in the 2 µm Region Using Spectra from the Solar- Pointing FTS Iouli Gordon,
Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases G. Cazzoli, C. Puzzarini Dipartimento.
MICROWAVE SPECTRUM OF 12 C 16 O S.A. TASHKUN and S.N. MIKHAILENKO, Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Zuev.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
CDSD (Carbon Dioxide Spectroscopic Databank): Updated and Enlarged Version for Atmospheric Applications Sergei Tashkun and Valery Perevalov Laboratory.
Deuterium enriched water vapor Fourier Transform Spectroscopy: the cm -1 spectral region. (1) L. Daumont, (1) A. Jenouvrier, (2) S. Fally, (3)
DIODE-LASER AND FOURIER-TRANSFORM SPECTROSCOPY OF 14 NH 3 AND 15 NH 3 IN THE NEAR-INFRARED (1.5 µm) Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire.
HITRAN in the XXI th Century: Beyond Voigt and Beyond Earth L.S. Rothman, a I.E. Gordon, a C. Hill, a,b R.V. Kochanov, a,c P. Wcisło, a,d J. Wilzewski.
Manfred Birk, Georg Wagner Remote Sensing Technology Institute (IMF) Deutsches Zentrum für Luft- und Raumfahrt (DLR) Lorenzo Lodi, Jonathan Tennyson Department.
69th Meeting - Champaign-Urbana, Illinois, 2014 FE11 1/12 JPL Progress Report Keeyoon Sung, Geoffrey C. Toon, Linda R. Brown Jet Propulsion Laboratory,
TEMPERATURE DEPENDENCES OF AIR-BROADENING AND SHIFT PARAMETERS IN THE ν 3 BAND OF OZONE M. A. H. SMITH NASA Langley Research Center, Hampton, VA
Yu. I. BARANOV, and W. J. LAFFERTY Optical Technology Division Optical Technology Division National Institute of Standards and Technology, Gaithersburg,
Ro-vibrational Line Lists for Nine Isotopologues of CO Suitable for Modeling and Interpreting Spectra at Very High Temperatures and Diverse Environments.
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
HOT EMISSION SPECTRA FOR ASTRONOMICAL APPLICATIONS: CH 4 & NH 3 R. Hargreaves, L. Michaux, G. Li, C. Beale, M. Irfan and P. F. Bernath 1 Departments of.
Jonathan Tennyson Physics and Astronomy, University College London Hitran meeting World Cup 2010 Calculating the spectroscopic behaviour of hot molecules.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
> ISMS 2017 > Joep Loos • P2355: Experimental line list of water vapor > Experimental line list of water vapor absorption lines in the spectral.
HITRAN2016 DATABASE PART II: OVERVIEW OF THE SPECTROSCOPIC PARAMETERS OF THE TRACE GASES Good Morning everyone. It’s my honor to be here and I would like.
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
“Brief” update on ACE water vapour
Cavity Ring-down Spectroscopy Of Hydrogen In The nm Region And Corresponding Line Shape Implementation Into HITRAN Yan Tan (a,b), Jin Wang (a),
Line Strength Measurements in the n2 band of H218O
Presentation transcript:

Water monomer linelists Matt Barber Jonathan Tennyson Department of Physics and Astronomy University College London December 2009

Monomer line list Extended to cover cm -1 Now uses HITRAN 2008 The HITRAN 2008 molecular spectroscopic database Rothman, LS; Gordon, IE; Barbe, A, et al. JQSRT 110, (2009) with correction to 8000 – 9000 cm -1 region Includes calculated line profile data IUPAC group: Recommends not using Voigt profiles – introduce speed-dependent widths

Monomer linelists: general strategy Augment Hitran with 1. Other experimental data 2. Our calculated data (BT2 linelist) Aim: to model CRDS experiments at 100 C

UCL and HITRAN spectra compared at 296K

UCL and HITRAN spectra compared at 368K

Monomer linelists: general strategy Augment Hitran with 1. Other experimental data 2. Our calculated data (BT2 linelist) Aim: to model CRDS experiments at 100 C Extensions to this strategy: 1. Calculated pressure broadening parameters (Voronin et al) added where none present. 2. Special analysis of 7000 – cm -1 region.

Comparison of calculated vs HITRAN intensites: near IR Expect theory to ~2% too strong. Conclusion: HITRAN intensities cm -1 are too weak

Monomer linelists: general strategy Augment Hitran with 1. Other experimental data 2. Our calculated data (BT2 linelist) Aim: to model CRDS experiments at 100 C Extensions to this strategy: 1. Calculated pressure broadening parameters (Voronin et al) added where none present. 2. Special analysis of 7000 – cm -1 region. Calculated intensities used in place of HITRAN cm -1.

Conclusion Our linelists appear to make a significant difference (improvement) Work on this now complete (?)