The Search for Extrasolar Planets Since it appears the conditions for planet formation are common, we’d like to know how many solar systems there are,

Slides:



Advertisements
Similar presentations
© 2005 Pearson Education Inc., publishing as Addison-Wesley Extrasolar Planets Since our Sun has a family of planets, shouldnt other stars have them as.
Advertisements

Chapter 13 Other Planetary Systems The New Science of Distant Worlds.
A Search for Habitable Planets 1 NASA’s first mission to detect Earth-size planets orbiting in the habitable zone of sun-like stars. Launched March 6,
Tim Healy Tony Perry Planet Survey Mission. Introduction Finding Planets Pulsar Timing Astrometry Polarimetry Direct Imaging Transit Method Radial Velocity.
Other Planetary Systems. Detecting Extrasolar Planets  Extrasolar planets are planets orbiting other stars.  We usually detect these planets by the.
Other Planetary Systems (Chapter 13) Extrasolar Planets
© 2010 Pearson Education, Inc. Chapter 13 Other Planetary Systems: The New Science of Distant Worlds.
Extrasolar planet detection: Methods and limits Ge/Ay133.
The Search for Extrasolar Planets Since it appears the conditions for planet formation are common, we’d like to know how many solar systems there are,
Habitable Planets Astronomy 315 Professor Lee Carkner Special Topic.
All About Exoplanets Dimitar D. Sasselov Harvard-Smithsonian Center for Astrophysics.
The Search for Earth-sized Planets Around Other Stars The Kepler Mission (2009)
Extra-Solar Planets Astronomy 311 Professor Lee Carkner Lecture 24.
Extrasolar planet detection: Methods and limits Ge/Ay133.
The Next 25(?) Years Future Missions to Search for Extra-solar Planets and Life.
Extra-Solar Planets Astronomy 311 Professor Lee Carkner Lecture 24.
Copyright © 2012 Pearson Education, Inc. Extrasolar Planetary Systems.
Detection of Terrestrial Extra-Solar Planets via Gravitational Microlensing David Bennett University of Notre Dame.
Extrasolar planet detection: Methods and limits Ge/Ay133.
Extra-Solar Planets Astronomy 311 Professor Lee Carkner Lecture 24.
Astronomy190 - Topics in Astronomy Astronomy and Astrobiology Lecture 19 : Extrasolar Planets Ty Robinson.
Extrasolar planets. Finding planets Finding planets around other stars is hard!  need to look for something very faint very close to something that is.
Dr. Matt Burleigh 3677: Life in the Universe DEPARTMENT OF PHYSICS AND ASTRONOMY 3677 Life in the Universe Extra-solar planets: Revision Dr. Matt Burleigh.
Today’s APODAPOD  Begin Chapter 8 on Monday– Terrestrial Planets  Hand in homework today  Quiz on Oncourse The Sun Today A100 – Ch. 7 Extra-Solar Planets.
6.5 Other Planetary Systems Our goals for learning: How do we detect planets around other stars? How do extrasolar planets compare with those in our own.
AST 111 Exoplanets I.
Extrasolar planets. Detection methods 1.Pulsar timing 2.Astrometric wobble 3.Radial velocities 4.Gravitational lensing 5.Transits 6.Dust disks 7.Direct.
ISNS Phenomena of Nature 1. Imaging –use a camera to take pictures (images) –Photometry  measure total amount of light from an object 2.Spectroscopy.
Detection of Extrasolar Planets ASTR 4: Life in the Universe.
Extra-Solar Planets Astronomy 311 Professor Lee Carkner Lecture 24.
1B11 Foundations of Astronomy Extrasolar Planets Liz Puchnarewicz
Lecture Outline Chapter 10: Other Planetary Systems: The New Science of Distant Worlds © 2015 Pearson Education, Inc.
18.3 Life Around Other Stars Our goals for learning Are habitable planets likely? Are Earth-like planets rare or common?
NSCI 314 LIFE IN THE COSMOS 13 - EXTRASOLAR PLANETS Dr. Karen Kolehmainen Department of Physics, CSUSB
Modern Concepts for a Terrestrial Planet Finder Space Telescope James Kasting Department of Geosciences Penn State University.
Detecting Terrestrial Planets by Transits: The Kepler Mission (2009)
Worlds Unnumbered Lecture Twenty-Nine, Apr. 14, 2003.
The Planets of Other Stars. The Astronomy Diagnostic Test (ADT): The Sequel On the first day of class, the University requested that everyone fill out.
Kepler - A Search for Extraterrestrial Planets Nick Gautier Jet Propulsion Laboratory California Institute of Technology January 30, 2009.
Extrasolar Planets Instructor: Calvin K. Prothro; P.G., CPG (John Rusho) Section 003: F343, T Th 11:00 p.m. to 12:15 p.m. Section 004: F381, T Th 12:30.
Other Planets (Exoplanets). OGLE-2005-BLG-390Lb Discovered in 2005, via `gravitational microlensing’, which uses the properties of lensing of light to.
Lecture 14: The Discovery of the World of Exoplanets Indirect methods for planet detection The Astrometric method The Doppler shift method The Transit.
Extra-Solar Planet Populations Stephen Eikenberry 4 November 2010 AST
Extrasolar Planets The Search For Ever since humans first gazed into the night sky, the question of whether we are alone in the universe has remained unanswered.
Extra-Solar Planetary Systems. Current Planet Count: 331 Stars with Planets: 282 Earthlike Planets: 0 Four of the five planets that orbit 55 Cancri.
The Search for Extra-Solar Planets Dr Martin Hendry Dept of Physics and Astronomy.
Extrasolar planets. Detection methods 1.Pulsar Timing Pulsars are rapidly rotating neutron stars, with extremely regular periods Anomalies in these periods.
Lecture 34 ExoPlanets Astronomy 1143 – Spring 2014.
The Hertzsprung-Russell Diagram
Astronomy 1010-H Planetary Astronomy Fall_2015 Day-26.
Exoplanets Or extra-solar planets have recently been discovered. There are important to find to help fill in the Drake Equation that determines the probability.
NASA’s Kepler and K2 Missions:
Extra-Solar Planet Populations George Lebo 10 April 2012 AST
2003 UB313: The 10th Planet?. Extra-Solar or Exoplanets Planets around stars other than the Sun Difficult to observe Hundreds discovered (> 2000 so far)
2003 UB313: The 10th Planet?. Extra-Solar or Exoplanets Planets around stars other than the Sun Difficult to observe Hundreds discovered (> 2000 so far)
Astronomy 3040 Astrobiology Spring_2016 Day-7. Homework -1 Due Monday, Feb. 8 Chapter 2: 1, 3, 16 23, 24, 26 29, 30, , 54, 56 The appendices will.
Nick Weber ZONES OF HABITABILITY AROUND NORMAL STARS.
Lecture Outline Chapter 10: Other Planetary Systems: The New Science of Distant Worlds.
Extrasolar Planets. An Extrasolar planet, or exoplanet, is a planet outside the Solar System. First exoplanet was confirmed indirectly at G-type star.
Exoplanets: Direct Search Methods 31 March 2016 © 2014 Pearson Education, Inc.
Searching for Alien Worlds. Methods of Searching for Alien Planets Pulsar Timing Astrometry Radial Velocity Transits Lensing Imaging.
Chapter 10: Other Planetary Systems: The New Science of Distant Worlds
Chapitre 1- Introduction
Exoplanets: Indirect Search Methods
Habitability Outside the Solar System
Exoplanets: The New Science of Distant Worlds
Exoplanets EXOPLANETS Talk prepared by: Santanu Mohapatra(14PH20032)
PHYS 2070 Tetyana Dyachyshyn
Extrasolar Planets.
The Search for Habitable Worlds
Presentation transcript:

The Search for Extrasolar Planets Since it appears the conditions for planet formation are common, we’d like to know how many solar systems there are, and what they look like. Indirect Methods: 1) Doppler shift of the star’s orbit this is the main one so far 2) Astrometric wobble of the star’s orbit Semi-direct Methods: 1) Transits (light blocked by the planet) might also see phases 2) Microlensing (planet’s gravity) Direct Methods: 1) Planet imaged directly (perhaps with coronograph) reflected or emitted (IR or radio) light 2) Planet imaged by interferometer

Precision Radial Velocity Searches Shift is 1 part in 100 million

Discovery of Extrasolar planets We get the orbital period, semimajor axis, and a lower limit on the mass of the planet. This can only do giant planets relatively close in (but could see Jupiter).

A Big Surprise : Close-in Jupiters It is easiest to find a massive planet that is close to the star (it repeats quickly and has a large velocity amplitude). The first discovery, 51 Peg, had a 4 day orbit (0.05 AU!) and the mass of Jupiter. Many are now known, but that doesn’t mean they are most common, just easiest to find (and present in some numbers).

Properties of the systems found: 1

Properties of the systems found: 2

Astrometry This works best for large orbits (which take a long time) and stars that are nearby. Interferometry would allow very small motions to be measured.

“Microlensing” : Gravitational lenses In principle, this method could even see Earth-mass planets. You have to have a huge and long-time monitoring program with high time resolution and good photometric precision. The downside is that you will only detect the planet once, and can’t learn anything more about it. One detection has been claimed (but how to confirm it?).

The Problem with Direct Imaging 1)The host star is FAR brighter (10 6 ) than any planet (except very young Jupiters in the infrared). 2)The planet is VERY close in angle (micro- arcsecs) to the star, so any stray light from the star can overwhelm the light from the planet. Reflected light Thermal emission

Interferometric Missions Darwin Terrestrial Planet Finder Perhaps a decade from now we will be able to directly image older extrasolar giant planets.

Nulling Interferometry You can try to keep the star at a destructive null fringe, while the planet will be slightly off the fringe and so still visible. Might be able to reduce the star’s brightness by a million times?

Planetary Transits A transit is like an eclipse, only smaller… This has been seen for a few cases (confirming the radial velocity detections).

13 PHOTOMETRY CAN DETECT EARTH-SIZED PLANETS The relative change in brightness is equal to the relative areas (A planet /A star ) To measure 0.01% must get above the Earth’s atmosphere This is also needed for getting a high duty cycle Method is robust but you must be patient: Require at least 3 transits, preferably 4 with same brightness change, duration and temporal separation (the first two establish a possible period, the third confirms it) Jupiter: 1% area of the Sun (1/100) Earth or Venus 0.01% area of the Sun (1/10,000)

Information from Transits HST measurement of HD The distance and size of the planet come out directly. If you have radial velocity as well you get the mass, and thus the density. It is unlikely you could ever image the planet or get its spectrum, but you can get the thermal spectrum and something about the atmosphere during eclipses.

Summary of Kepler Mission Goals Find the frequency of terrestrial planets in the Galaxy Characterize the properties of inner planetary systems. Determine the properties of stars (single & multiple) hosting planets. Discover terrestrial planets in habitable zones (or show that they are rare). Detect true Earth analogs A NULL result would also be very significant (frequency of stars with terrestrial planets is less than 5%) Find the frequency of terrestrial planets in the Galaxy Characterize the properties of inner planetary systems. Determine the properties of stars (single & multiple) hosting planets. Discover terrestrial planets in habitable zones (or show that they are rare). Detect true Earth analogs A NULL result would also be very significant (frequency of stars with terrestrial planets is less than 5%) Kepler is uniquely qualified to detect Earth-sized extrasolar planets “before this decade is out”! Kepler is uniquely qualified to detect Earth-sized extrasolar planets “before this decade is out”!

16 Kepler MISSION CONCEPT The Kepler Mission is optimized for finding habitable planets ( 0.5 to 10 M  ) in the HZ ( near 1 AU ) of solar-like stars Continuously and simultaneously monitor 100,000 dwarf stars using a 1-meter Schmidt telescope: FOV >100 deg 2 with 42 CCDs Photometric precision of < 20 ppm in 6.5 hours on V mag = 12 solar-like star  4  detection for one Earth-sized transit

Kepler CCDs on the Sky Full Moon

Transit Detectability The strict periodicity of planetary transits provides an extremely powerful filter against misleading stellar signals. You need 3 transits to be sure you’ve seen it.

The Easy False-Positives Problems There are several common sources of false positives. They produce the right signal for the wrong reasons but some are easy to deal with: 1.Grazing eclipses of one star by another 2.M dwarfs transiting giants and supergiants 3.White dwarfs transiting solar-type stars A full eclipse is flat-bottomed, a grazing eclipse is more bowl or “V” shaped. Giants and supergiants can be known from their spectra and photometric behavior. Gravitational focussing makes a white dwarf transit into a bump instead of a dip!

The Hard False-Positives Problem The other types generate the right signal for the wrong reasons and are harder to remove: 1.Full eclipses in a faint background binary whose light is combined with a foreground bright star 2.Triple star systems with a bright primary and a faint eclipsing secondary pair + =

Potential for Planetary Detections Expected # of planets found, assuming one planet of a given size & semi-major axis per star and random orientation of orbital planes. # of Planet Detections Orbital Semi-major Axis (AU)

22 T HE H ABITABLE Z ONE BY S TELLAR T YPES The Habitable Zone (HZ) in green is the distance from a star where liquid water is expected to exist on the planets surface (Kasting, Whitmire, and Reynolds 1993).

Search Methods : what they can find Detections by 2005