J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy

Slides:



Advertisements
Similar presentations
Monolithic Active Pixel Sensor for aTera-Pixel ECAL at the ILC J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
Advertisements

TPAC: A 0.18 Micron MAPS for Digital Electromagnetic Calorimetry at the ILC J.A. Ballin b, R.E. Coath c *, J.P. Crooks c, P.D. Dauncey b, A.-M. Magnan.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory LCFI Status Report: Sensors for the ILC Konstantin Stefanov CCLRC Rutherford Appleton Laboratory.
A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.
January US LC Workshop SLAC – Chris Damerell 1 Strategies for pickup and noise suppression with different vertex detector technologies Chris Damerell.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Prague TWEPP TWEPP-07 Topical Workshop on Electronics for Particle.
ISIS and SPiDeR Zhige ZHANG STFC Rutherford Appleton Laboratory.
SPIDER Silicon Pixel Detector R&D  Birmingham University (N. Watson, J. Wilson, R. Staley), Bristol University (J. Goldstein, D. Cussans, R. Head, S.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
Design and Implementation a 8 bits Pipeline Analog to Digital Converter in The Technology 0.6 μm CMOS Process Eri Prasetyo.
Jaap Velthuis, University of Bristol SPiDeR SPiDeR (Silicon Pixel Detector Research) at EUDET Telescope Sensor overview with lab results –TPAC –FORTIS.
Tera-Pixel APS for CALICE Progress Meeting 6 th September 2006.
Anne-Marie Magnan Imperial College London A MAPS-based digital Electromagnetic Calorimeter for the ILC on behalf of the MAPS group: Y. Mikami, N.K. Watson,
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
10 Nov 2004Paul Dauncey1 MAPS for an ILC Si-W ECAL Paul Dauncey Imperial College London.
Thursday, May 10th, 2007 Calice Collaboration meeting --- A.-M. Magnan --- IC London 1 Progress Report on the MAPS ECAL R&D on behalf of the MAPS group:
1 The MAPS ECAL ECFA-2008; Warsaw, 11 th June 2008 John Wilson (University of Birmingham) On behalf of the CALICE MAPS group: J.P.Crooks, M.M.Stanitzki,
MAPS ECAL Nigel Watson Birmingham University  Overview  Testing  Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov, R.Turchetta,
Tera-Pixel APS for CALICE Progress 19 th January 2007.
Tera-Pixel APS for CALICE Progress meeting, 17 th September 2007 Jamie Crooks, Microelectronics/RAL.
ITBW07 R. Frey1 ECal with Integrated Electronics Ray Frey, U of Oregon Ongoing R&D Efforts: CALICE silicon-tungsten ECal – 2 parallel efforts:  Technology.
1D or 2D array of photosensors can record optical images projected onto it by lens system. Individual photosensor in an imaging array is called pixel.
1 Instrumentation DepartmentMicroelectronics Design GroupR. Turchetta 3 April 2003 International ECFA/DESY Workshop Amsterdam, 1-4 April 2003 CMOS Monolithic.
Rutherford Appleton Laboratory Particle Physics Department A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill factor.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
ASIC1  ASIC2 Things still to learn from ASIC1 Options for ASIC 1.01  1.1  1.2 Logic test structure for ASIC2.
Dr Renato Turchetta CMOS Sensor Design Group CCLRC Technology Large Area Monolithic Active Pixel Sensors.
Development of Advanced MAPS for Scientific Applications
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
SPiDeR  SPIDER DECAL SPIDER Digital calorimetry TPAC –Deep Pwell DECAL Future beam tests Wishlist J.J. Velthuis for the.
7 Nov 2007Paul Dauncey1 Test results from Imperial Basic tests Source tests Firmware status Jamie Ballin, Paul Dauncey, Anne-Marie Magnan, Matt Noy Imperial.
7 Apr 2010Paul Dauncey1 Tech Board: DECAL beam test at DESY, March 2010 Paul Dauncey.
MAPS for a “Tera-Pixel” ECAL at the International Linear Collider J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of.
Tera-Pixel APS for CALICE Jamie Crooks, Microelectronics/RAL SRAM Column Concept.
18 Sep 2008Paul Dauncey1 The UK MAPS/DECAL Project Paul Dauncey for the CALICE-UK MAPS group.
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
J. Crooks STFC Rutherford Appleton Laboratory
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
Advanced Pixel Architectures for Scientific Image Sensors Rebecca Coath, Jamie Crooks, Adam Godbeer, Matthew Wilson, Renato Turchetta CMOS Sensor Design.
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Prague September TWEPP-07 Topical Workshop on Electronics for.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
CMOS MAPS with pixel level sparsification and time stamping capabilities for applications at the ILC Gianluca Traversi 1,2
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC Marcel Stanitzki STFC-Rutherford Appleton Laboratory Y. Mikami, O. Miller,
Fermilab Silicon Strip Readout Chip for BTEV
Custom mechanical sensor support (left and below) allows up to six sensors to be stacked at precise positions relative to each other in beam The e+e- international.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Oct Monolithic pixel detector Update  One chip combining both sensor and read-out – source of ionization e- : epitaxial layer of chip – e- collected.
4 Jun 2008Paul Dauncey1 Crosstalk and laser results Paul Dauncey, Anne-Marie Magnan, Matt Noy.
MAPS ECAL Nigel Watson Birmingham University  Technical Status  Future Plans  Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov,
Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
9 Sep 2008Paul Dauncey1 MAPS/DECAL Status Paul Dauncey for the CALICE-UK MAPS group.
Presented by Renato Turchetta CCLRC - RAL 7 th International Conference on Position Sensitive Detectors – PSD7 Liverpool (UK), September 2005 R&D.
Advanced Monolithic Active Pixel Sensors with full CMOS capability for tracking, vertexing and calorimetry Marcel Stanitzki STFC-Rutherford Appleton Laboratory.
SPiDeR  Status of SPIDER Status/Funding Sensor overview with first results –TPAC –FORTIS –CHERWELL Beam test 09 Future.
Marcel Stanitzki 1 The MAPS ECAL Status and prospects Fermilab 10/Apr/2007 Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
for the SPiDeR collaboration (slides from M. Stanitski, Pixel2010)
A MAPS-based readout of an electromagnetic calorimeter for the ILC
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
UK Activities on pixels. (Previous report at Frascati, Dec 2009)
Update on DECAL studies for future experiments
HV-MAPS Designs and Results I
TPAC1.1 progress Jamie C 4th June 2008.
Signal processing for High Granularity Calorimeter
Presentation transcript:

J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill Factor J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy Imperial College London J.P. Crooks, M. Stanitzki, K.D. Stefanov, R. Turchetta, M. Tyndel, E.G. Villani STFC-Rutherford Appleton Laboratory

Introduction SiW ECAL for ILC 30 layers silicon & tungsten Prove Monolithic Active Pixel Sensor (MAPS) as a viable solution for the silicon! Machine operation 189ns min bunch spacing 199ms between bunch trains for readout Pixel Specification Sensitive to MIP signal Noise rate 10-6 Binary readout from 50micron pixels Store hit timestamp & location Design to hold data for 8k bunch crossings before readout 2625 bunches

INMAPS Process Standard 0.18 micron CMOS 6 metal layers used Analog & Digital VDD @ 1.8v 12 micron epitaxial layer Additional module: Deep P-Well Developed by foundry for this project Added beneath all active circuits in the pixel Should reflect charge, preventing unwanted loss in charge collection efficiency Device simulations show conservation of charge Test chip processing variants Sample parts were manufactured with/without deep p-well for comparison

Pixel Architectures preShape preSample Gain 94uV/e Noise 23e- Power 8.9uW 150ns “hit” pulse wired to row logic Shaped pulses return to baseline preSample Gain 440uV/e Noise 22e- Power 9.7uW 150ns “hit” pulse wired to row logic Per-pixel self-reset logic ChAmp

Pixel Layouts preShape Pixel preSample Pixel Deep p-well Diodes 160 transistors 27 unit capacitors Configuration SRAM Mask Comparator trim (4 bits) 2 variants: subtle changes to capacitors preSample Pixel 4 diodes 189 transistors 34 unit capacitors 1 resistor (4Mohm) Configuration SRAM Mask Comparator trim (4 bits) 2 variants: subtle changes to capacitors Deep p-well Circuit N-Wells Diodes

Test Chip Overview 8.2 million transistors 28224 pixels; 50 microns; 4 variants Sensitive area 79.4mm2 of which 11.1% “dead” (logic) Four columns of logic + SRAM Logic columns serve 42 pixels Record hit locations & timestamps Local SRAM Data readout Slow (<5Mhz) Current sense amplifiers Column multiplex 30 bit parallel data output

Pixel test- structures Preliminary Tests: Proof of Life Pixel Configuration Write & read back random config data with no errors PreSample test pixels Monostables generate pulses Comparator switches; TRIM settings adjust threshold Pixel signal output shows saturation due to ambient light Voltage step on Vrst shows output pulse, which can be reset Digital Logic Operate all four columns in “override” mode which fills SRAMs with false hits Row, timestamp, mux and hit pattern data look correct for “override” mode Digital data captured on PC Just starting to evaluate real “noise” hits from main body of pixels Pixel test- structures ChAmp

Preliminary tests: Laser Scan Focussed Laser 4ns pulse at 1064nm wavelength Focussed to 4x4 micron on rear of sensor Uncalibrated signal Step by 5um in x and y Record & plot signal step size for each position 12um epi + DPW

Evaluation of Deep P-Well Without DPW With DPW Focussed Laser Focussed to 5x5 micron on rear of sensor x 5um steps y Test pixel outlines overlaid for scale: estimated position

Summary & Future Preliminary results Immediate Future Proof of life from novel MAPS test sensor Charge collection observed Proof of principle; deep P-well: “INMAPS” process Immediate Future PCBs in manufacture Quantitative evaluation of sensor performance Fe55 & Sr90 radioactive sources Laser scan Cosmics (stack of 4 sensors) Beam test  Dec 07

Second Sensor Larger format Pixel design System on chip Reticle size ~ 25x25mm Minimised dead area Minimised number of I/O pads, suitable for bump bonding Will be tiled to create a square array for beam test Pixel design Selected from one of the variants based on test results Optimisation? Pixel pitch  100 microns? System on chip Integrated timecode & sequencing Serial data output Minimised number of control signals required Design submission: mid 2008