1 “Fast FPGA-based trigger and data acquisition system for the CERN experiment NA62: architecture and algorithms” Authors G. Collazuol(a), S. Galeotti(b),

Slides:



Advertisements
Similar presentations
JLab High Resolution TDC Hall D Electronics Review (7/03) - Ed Jastrzembski.
Advertisements

LAV trigger primitives Francesco Gonnella Photon-Veto Working Group CERN – 09/12/2014.
Maciej Gołaszewski Tutor: Tadeusz Sondej, PhD Design and implementation of softcore dual processor system on single chip FPGA Design and implementation.
Potentialities of common-used TDC chips for high-speed event timer design E. Boole, V. Vedin Institute of Electronics and Computer Science, Riga, Latvia.
Introduction We propose a design of Level-1 trigger and readout chain for the upcoming J-Parc experiment that supports trigger rates in excess of 100 KHz.
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
1 Design of the Front End Readout Board for TORCH Detector 10, June 2010.
1 Tell10 Guido Haefeli, Lausanne Electronics upgrade meeting 10.February 2011.
LAV firmware status Francesco Gonnella Mauro Raggi 23 rd May 2012 TDAQ Working Group Meeting.
Inter TEL62 communication M. Raggi, M. Piccini, F. Gonnella 16 th October 2013 TDAQ Working Group Meeting.
Mathieu Goffe EUDET JRA1 meeting, DESY Wednesday 30 January 2008 IPHC, 23 rue du Loess BP 28, 67037, Strasbourg Cedex 02, France.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
Saverio Minutoli INFN Genova 1 T1 Electronic status Electronic items involved: Anode Front End Card Cathode Front End Card Read-Out Control card Slow Control.
Huazhong Normal University (CCNU) Dong Wang.  Introduction to the Scalable Readout System  MRPC Readout Specification  Application of the SRS to CMB-MRPC.
The GANDALF Multi-Channel Time-to-Digital Converter (TDC)  GANDALF module  TDC concepts  TDC implementation in the FPGA  measurements.
15th Dec, 2007DAE-SNP07 S.S.Upadhya1 Electronics and Data Acquisition system for prototype INO-ICAL detector A.Behere1, V.B.Chandratre1, S.D.Kalmani2,
CARIOCA (Cern and RIO Current Amplifier). The CARIOCA chip has 8 binary output, therefore DIALOG has 16 PCH as input channels and has up to 8 LCH as output.
M. Lo Vetere 1,2, S. Minutoli 1, E. Robutti 1 1 I.N.F.N Genova, via Dodecaneso, GENOVA (Italy); 2 University of GENOVA (Italy) The TOTEM T1.
K.C.RAVINDRAN,GRAPES-3 EXPERIMENT,OOTY 1 Development of fast electronics for the GRAPES-3 experiment at Ooty K.C. RAVINDRAN On Behalf of GRAPES-3 Collaboration.
Status of the Beam Phase and Intensity Monitor for LHCb Richard Jacobsson Zbigniew Guzik Federico Alessio TFC Team: Motivation Aims Overview of the board.
A PCI Card for Readout in High Energy Physics Experiments Michele Floris 1,2, Gianluca Usai 1,2, Davide Marras 2, André David IEEE Nuclear Science.
Muon Electronics Upgrade Present architecture Remarks Present scenario Alternative scenario 1 The Muon Group.
Parallel Data Acquisition Systems for a Compton Camera
NA62 Trigger Algorithm Trigger and DAQ meeting, 8th September 2011 Cristiano Santoni Mauro Piccini (INFN – Sezione di Perugia) NA62 collaboration meeting,
Annual Review Cern -June 13th, 2006 F. Loddo I.N.F.N. Bari RPC Electronics: Technical Trigger Flavio Loddo I.N.F.N. Bari On behalf of the RPC-Trigger group.
1 VeLo L1 Read Out Guido Haefeli VeLo Comprehensive Review 27/28 January 2003.
Status and Improvements of TDCB project TDAQ working group meeting Andrea Burato (INFN Pisa) On behalf of TDCB working group.
TELL-1 and TDC board: present status and future plans B. Angelucci, A. Burato, S. Venditti.
TDCB Status report Bruno Angelucci, Stefano Venditti NA62 meeting, 14/12/2011.
24/03/2010 TDAQ WG - CERN 1 LKr L0 trigger status report V. Bonaiuto, G. Carboni, L. Cesaroni, A. Fucci, G. Paoluzzi, A. Salamon, G. Salina, E. Santovetti,
Overview, remarks, lamentations, hope and despair M. Sozzi TDAQ WG meeting CERN - 4 June 2013 Introduction, news and appetizer.
01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
TEL62 status and plans Elena Pedreschi INFN-Pisa Thursday 08 September 2011 TDAQ WG Meeting at Mainz University.
Kraków4FutureDaQ Institute of Physics & Nowoczesna Elektronika P.Salabura,A.Misiak,S.Kistryn,R.Tębacz,K.Korcyl & M.Kajetanowicz Discrete event simulations.
KLM Trigger Status Barrel KLM RPC Front-End Brandon Kunkler, Gerard Visser Belle II Trigger and Data Acquistion Workshop January 17, 2012.
The FPGA based Trigger and Data Acquisition system for the CERN NA62 experiment Bruno Angelucci Physics Department University of Pisa INFN Pisa on behalf.
The Patti Board Gianluca Lamanna (INFNPisa) TEL62 workshop – Pisa –
Peter LICHARD CERN (NA62)1 NA62 Straw tracker electronics Study of different readout schemes Readout electronics frontend backend Plans.
CBM-TOF-FEE Jochen Frühauf, GSI Picosecond-TDC-Meeting.
09/09/2010 TDAQ WG - Louvain 1 LKr L0 trigger status report V. Bonaiuto, A. Fucci, G. Paoluzzi, A. Salamon, G. Salina, E. Santovetti, F. Sargeni, F. Scarfi’
TLU plans 21/03/20161 D. Esperante, Velo upgrade meeting.
Rutherford Appleton Laboratory September 1999Fifth Workshop on Electronics for LHC Presented by S. Quinton.
Many LAV stations in digital trigger Francesco Gonnella Photon-Veto Working Group CERN – 03/02/2015.
Update on works with SiPMs at Pisa Matteo Morrocchi.
X SuperB Workshop - SLAC Oct 06 to Oct 09, 2009 A.Cotta Ramusino, INFN Ferrara 1 SuperB IFR: outline of the IFR prototype electronics A.C.R
August 24, 2011IDAP Kick-off meeting - TileCal ATLAS TileCal Upgrade LHC and ATLAS current status LHC designed for cm -2 s 7+7 TeV Limited to.
FPGA based signal processing for the LHCb Vertex detector and Silicon Tracker Guido Haefeli EPFL, Lausanne Vertex 2005 November 7-11, 2005 Chuzenji Lake,
PC-based L0TP Status Report “on behalf of the Ferrara L0TP Group” Ilaria Neri University of Ferrara and INFN - Italy Ferrara, September 02, 2014.
C.Beigbeder, D.Breton, M.El Berni, J.Maalmi, V.Tocut – LAL/In2p3/CNRS L.Leterrier, S. Drouet - LPC/In2p3/CNRS P. Vallerand - GANIL/CNRS/CEA SuperB -Collaboration.
29/05/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
Eric Hazen1 Ethernet Readout With: E. Kearns, J. Raaf, S.X. Wu, others... Eric Hazen Boston University.
K + → p + nn The NA62 liquid krypton electromagnetic calorimeter Level 0 trigger V. Bonaiuto (a), A. Fucci (b), G. Paoluzzi (b), A. Salamon (b), G. Salina.
A. Salamon - TDAQ WG Pisa 27/03/ Lkr/L0 Trigger V. Bonaiuto, N. De Simone, L. Federici, A. Fucci, G. Paoluzzi, A. Salamon, G. Salina, E. Santovetti,
"North American" Electronics
DAQ ACQUISITION FOR THE dE/dX DETECTOR
The Totem trigger architecture The LONEG firmware archtecture
Pulsar 2b AMchip05-based Pattern Recognition Mezzanine
Production Firmware - status Components TOTFED - status
TELL1 A common data acquisition board for LHCb
R. Piandani2 , F. Spinella2, M.Sozzi1 , S. Venditti 3
TDCB status Jacopo Pinzino, Stefano Venditti
L0 processor for NA62 Marian Krivda 1) , Cristina Lazzeroni 1) , Roman Lietava 1)2) 1) University of Birmingham, UK 2) Comenius University, Bratislava,
M. Sozzi NA62 TDAQ WG meeting CERN – 20/10/2010
VELO readout On detector electronics Off detector electronics to DAQ
FPGA-based Time to Digital Converter and Data Acquisition system for High Energy Tagger of KLOE-2 experiment L. Iafolla1,4, A. Balla1, M. Beretta1, P.
Trigger system Marián Krivda (University of Birmingham)
STAR-CBM Joint Workshop Heidelberg, Physikalisches Institut
PID meeting Mechanical implementation Electronics architecture
SVT detector electronics
TELL1 A common data acquisition board for LHCb
Presentation transcript:

1 “Fast FPGA-based trigger and data acquisition system for the CERN experiment NA62: architecture and algorithms” Authors G. Collazuol(a), S. Galeotti(b), E. Imbergamo(c), G. Lamanna(d), G. Magazzù(b), M. Sozzi (d) (a) Scuola Normale Superiore and INFN section of Pisa, Italy (b) INFN section of Pisa, Pisa, Italy (c) University of Perugia and INFN section of Perugia, Italy (d) University of Pisa and INFN section of Pisa, Italy Speaker: E. Imbergamo DSD08, September , Parma, Italy

2 Application framework Elementary particle physics NA62 experiment (CERN laboratories) Status of designing/prototyping Design of the DAQ and trigger system  Input data rate Mhz  Input data bandwidth ~ 2 TB/sec  Number of input channels ~ 20K  No undetected electronics failures up to Out of the shelf electronics

3 Trigger & daq tradition / our challenge L0 & L1: very fast & fast (~0.1 & 1. µs) logic conditions in dedicated hardware  Duplicate channels // create special assemblies L2: partial reconstruction in on-line processors (~1-10ms) L3: full reconstruction in off- line pc-farm Our challenge: a common trigger & daq system

4 Hardware building blocks HPTDC chip (Time to Digital Converter, developed by CERN)  100 ps resolution/channel  32 input channels (LVDS) // daisy chain-able  Programmable via JTAG TDCB board (4xHPTDCs, Altera StratixII, QPLL, miniature connectors)  TDCs configuration // readout // emulation // data pre- processing TELL1 board (4xTDCB, 4+1xAltera Stratix, 4x96MB SDRAM, 4x GigaBitEthernet, 1xControl PC, developed by EPFL Lausanne)  Data buffering // Implement L0 trigger primitive // Interface to the software level of trigger

5 Hardware building blocks (TDCB)

6 Hardware building blocks (TELL1) GBE CCPC

7 Example of building blocks assembly 4x512 input channels (times) Input data buffered in TELL1 L0-L1 primitives evaluated in daisy chained TELL1s Make trigger decision (L0T) Send trigger decision (TTC) Transmit input data to PCs  Trigger decision evaluated on the same readout data

8 L0-L1 primitive definition (I) Tell1 Count matching times  Multiplicity threshold

9 L0-L1 primitive definition (II) Produce full list of times (no append, rather merge) Send the list to the L0T Predictable/fixed latency

10 L0-L1 primitive implementation Histogram-like algorithm Map times into time-bins of preset length For any new time increment the number of entries for the corresponding time-bin Simple VHDL description Naively: N counters and one mux Very few resources: 100 Stratix LEs Up to 260 Mhz operating rate on our -7 speed grade Scalable

11 Preliminary hardware characterization Clock stability issue (40MHz input to TDCs)  Measured ~20ps (rms) jitter Cables (signal detector inputs to TDCs)  Delicate issue (hard manufacturing) TDC resolution (pulser inputs to TDCs)  Better than 90ps (rms) resolution  Intrinsic TDC performance seems to be achieved

12 Conclusion We are developing a triggerless-like trigger and daq system for high energy physics application Key building blocks functionality looks fine Time-matching algorithms have been designed for implementation in FPGA replacing traditional electronics for “coincidences”. Hardware characterization/prototyping has started