Graphing Linear Equations Using Slope-Intercept Form

Slides:



Advertisements
Similar presentations
2.3 Quick Graphs of Linear Equations
Advertisements

Objective: Use slope-intercept form and standard form to graph equations. 2.4 Quick Graphs of Linear Equations.
Goal: Use slope-intercept form and standard form to graph equations.
2.4 Graphing Linear Equation Sept 4, Y-intercept a point where a graph intersects the y-axis Vocabulary equation written in the form Ax + By = C.
Write and Graph Equations of Lines
WARM UP Evaluate the expression – – ÷ – ÷ – 8 ÷ Minutes Remain.
Lines with Zero Slope and Undefined Slope
Cartesian Plane and Linear Equations in Two Variables
 An equation of a line can be written in slope- intercept form y = mx + b where m is the slope and b is the y- intercept.  The y-intercept is where.
Quick graphs using Intercepts 4.3 Objective 1 – Find the intercepts of the graph of a linear equation Objective 2 – Use intercepts to make a quick graph.
Section 2.3 – Linear Functions and Slope-Intercept Form Consider a nonvertical line in the coordinate plane. If you move from any point on the line to.
4.5 Graphing Linear Equations
Linear Equations Ax + By = C.
Rectangular Coordinate System
Slope – Intercept Form What do all the points on the y-axis have in common? What do all the points on the x-axis have in common?
Do Now Find the slope of the line passing through the given points. 1)( 3, – 2) and (4, 5) 2)(2, – 7) and (– 1, 4)
Slope-Intercept Form Page 22 10/15. Vocabulary y-Intercept: the point at which a function crosses the y-axis (0, y) x-intercept: the point at which a.
Gold Day – 2/24/2015 Blue Day – 2/25/2015.  Unit 5 – Linear functions and Applications  Review – slope, slope intercept form  Standard Form  Finding.
MTH 070 Elementary Algebra I
C H 5: L INEAR F UNCTIONS 1 ST L ESSON : 3 W AY TO G RAPH L INEAR E QUATIONS Objectives: Understand what a linear function is. Graph a linear function.
3.2 Intercepts. Intercepts X-intercept is the x- coordinate of a point when the graph cuts the x-axis Y-intercept is the y- coordinate of a point when.
Graph an equation in standard form
Section 6-3: Standard Form of a Linear Equation SPI 22C: select the graph that represents a given linear function Objective: Graph and write linear equations.
Today we will explore the Essential Question, “What is the method for graphing a linear equation in standard form form using the slope. the y-intercept.
Lesson 6-3 (Part 1) Standard Form page 298
1 What you will learn today 1. Review of slope 2. How to determine slope 3. How to graph a linear equation in y = mx + b form 4. Slopes of parallel and.
Thinking Mathematically Algebra: Graphs, Functions and Linear Systems 7.2 Linear Functions and Their Graphs.
5-3 Slope Intercept Form A y-intercept of a graph is the y-coordinate of a point where the graph crosses the y-axis. *Use can use the slope and y-intercept.
Slope of a Line Chapter 7.3. Slope of a Line m = y 2 – y 1 x 2 – x 1 m = rise run m = change in y change in x Given two points (x 1, y 1 ) and (x 2, y.
2.4 Graphing Linear Equation Sept 12, Y-intercept a point where a graph intersects the y-axis Vocabulary equation written in the form Ax + By =
2.1 Functions and Their Graphs What you should learn: Goal1 Goal2 Represent relations and functions. Graph and evaluate linear functions. 2.1 Functions.
X and Y Intercepts.
LEARNING TARGETS: 1. TO IDENTIFY SLOPE FROM A TABLE OF VALUES. 2. TO IDENTIFY SLOPE FROM A GRAPH. 3. TO IDENTIFY SLOPE FROM 2 POINTS. 4. TO IDENTIFY SLOPE.
Write an equation of a line by using the slope and a point on the line.
1.2 Slopes and Intercepts Objectives: Graph a linear equation. Write a linear equation for a given line in the coordinate plane. Standards: K Apply.
Section 8.2 Points, Lines and Their Graphs. Vocabulary Graph/Plot – an ordered pair or a point in a numbered plane Horizontal Axis – x-axis Vertical Axis.
Warm Up 1. 4x + 2y = x + 2 = 6y Solve each equation for y. y = –2x Find the slope of the line that contains (5, 3) and (–1, 4). 4. Find the.
Chapter 2 Section 3. Graph linear functions EXAMPLE 1 Graph the equation. Compare the graph with the graph of y = x. a.a. y = 2x b.b. y = x + 3 SOLUTION.
2.3 Linear Functions and Slope-Intercept Form The slope of a nonvertical line is the ratio of the vertical change to the horizontal change between two.
Warm Up The senior class is selling tickets for a car wash to raise money for Grad Nite. Since pickup trucks, vans, and SUVs are bigger vehicles they are.
Quick Graphs Using Slope-Intercept form 4.6 Objective 1 – Graph a linear equation in slope-intercept form.
Graphing Linear Equations
The y-intercept and slope-intercept form/ Writing linear equations from graphs. 1/11/15.
Graphing Lines Using Slope Intercept Form Goal: Graph lines in slope intercept form.
Do Now 1)What is the equation of the line passing through the points (0, 5) and (3, 6) ?
Graphing Linear Inequalities in Two Variables Objective: Graph all of the solutions to a linear inequality.
Graphing Linear Equations In Standard Form Ax + By = C.
Graphing Linear Equations In Standard Form Ax + By = C.
SOLVING LINEAR SYSTEMS by GRAPHING ADV133 Put in slope-intercept form: y = mx + b. y = 4x – 1 y = –x + 4 The solution to a system of linear equations is.
2 – 3: Quick Graphs of Linear Equations Objective: CA Standard 17: Use the slope – intercept form of a linear equation to graph a linear equation. Use.
Introduction to Linear Functions 3.1/3.2 And Properties of Linear Function Graphs.
Pre-Algebra 11-3 Using Slopes and Intercepts Warm Up Find the slope of the line that passes through each pair of points. 1. (3, 6) and (-1, 4) 2. (1, 2)
Standard Form Equation of a Line Name Feb 29, 2011 Are these equations of the SAME LINE? y = x + 2 x – y = -2.
Do Now Graph the following line: y = 2x - 5. OBJ: Students will be able to graph equations of horizontal and vertical lines, graph linear equations in.
Warm Up If f(x)= 3x 2 + 2x, find f(3) and f(-2). Check Yourself! If g(x)= 4x 2 – 8x + 2 find g(-3)
Section 2.3 – Graph Equations of Lines A family of functions is a group of functions with shared characteristics. The parent function is the most basic.
3-3E Linear Functions Graphing using Intercepts Algebra 1 Glencoe McGraw-HillLinda Stamper.
Ex 2: Graph the line with slope 5/2 that passes through (-1, -3)
Quick Graphs of Linear Equations
Quick Graphs of Linear Equations
m is the slope b is the y-intercept
Standard Form I can identify intercepts from an equation.
What is the x-intercept?
____ is the y-intercept ___ is the slope
2.3 Graph Equations of Lines
2.3 Quick Graphs of Linear Equations
m is the slope b is the y-intercept
2.3 Graph Equations of Lines
Presentation transcript:

Graphing Linear Equations Using Slope-Intercept Form

Graphing Linear Equations Using Slope-Intercept Form Essential Questions What are the components of slope-intercept form? How are slope-intercept form and function form related? How are lines graphed using slope-intercept form?

Slope-Intercept Form VS. Function Form Slope-Intercept Form y = mx +b Function Form f(x) = mx + b

m is the slope b is the y-intercept SLOPE-INTERCEPT FORM If the graph of an equation intersects the y -axis at the point (0, b), then the number b is the y -intercept of the graph. To find the y -intercept of a line, let x = 0 in an equation for the line and solve for y. y x The slope intercept form of a linear equation is y = mx + b. (0 , b) b is the y-intercept m is the slope y = mx + b

GRAPHING EQUATIONS IN SLOPE-INTERCEPT FORM The slope-intercept form of an equation gives you a quick way to graph the equation. STEP 1 Write equation in slope-intercept form by solving for y. STEP 2 Find y-intercept, use it to plot point where line crosses y-axis. STEP 3 Find slope, use it to plot a second point on line. STEP 4 Draw line through points.

Graphing with the Slope-Intercept Form Graph y = x – 2 3 4 (4, 1) SOLUTION 3 The equation is already in slope-intercept form. (0, – 2) 4 The y-intercept is – 2, so plot the point (0, – 2) where the line crosses the y -axis. (0, – 2) The slope is , so plot a second point on the line by moving 4 units to the right and 3 units up. This point is (4, 1). 3 4 (4, 1). Draw a line through the two points.

What is the original amount you owe on layaway? Using the Slope-Intercept Form In a real-life context the y-intercept often represents an initial amount and the slope often represents a rate of change. You are buying an $1100 computer on layaway. You make a $250 deposit and then make weekly payments according to the equation a = 850 – 50 t where a is the amount you owe and t is the number of weeks. What is the original amount you owe on layaway? What is your weekly payment? Graph the model.

What is the original amount you owe on layaway? Using the Slope-Intercept Form What is the original amount you owe on layaway? SOLUTION First rewrite the equation as a = – 50t + 850 so that it is in slope-intercept form. a = – 50 t + 850 Then you can see that the a-intercept is 850. So, the original amount you owe on layaway (the amount when t = 0) is $850.

a = – 50t + 850 a = – 50 t + 850 What is your weekly payment? Using the Slope-Intercept Form a = – 50 t + 850 a = – 50t + 850 What is your weekly payment? SOLUTION From the slope-intercept form you can see that the slope is m = – 50. This means that the amount you owe is changing at a rate of – 50 per week. In other words, your weekly payment is $50.

Using the Slope-Intercept Form a = – 50 t + 850 Graph the model. (0, 850) SOLUTION Notice that the line stops when it reaches the t-axis (at t = 17). (at t = 17). (17, 0) (17, 0) The computer is completely paid for at that point.

Graphing Linear Equations Using Standard Form

Graphing Linear Equations Using Standard Form Essential Questions When is standard form of linear equations used? How are vertical and horizontal lines graphed?

x-coordinate of the point STANDARD FORM Standard form of a linear equation is Ax + By = C. A and B are not both zero. A quick way to graph this form is to plot its intercepts (when they exist). Draw a line through the two points. y x (x, 0) (x, The x-intercept is the x-coordinate of the point where the line intersects the x-axis. (x, 0) (x, 0) Ax + By = C Ax + By = C

GRAPHING EQUATIONS IN STANDARD FORM The standard form of an equation gives you a quick way to graph the equation. 1 Write equation in standard form. 2 Find x-intercept by letting y = 0. Solve for x. Use x-intercept to plot point where line crosses x-axis. 3 Find y-intercept by letting x = 0. Solve for y. Use y-intercept to plot point where line crosses y-axis. 4 Draw line through points.

Drawing Quick Graphs Graph 2x + 3y = 12 (0, 4) SOLUTION METHOD 1: USE STANDARD FORM (6, 0) 2x + 3y = 12 Standard form. 2x + 3(0) = 12 Let y = 0. x = 6 Solve for x. The x-intercept is 6, so plot the point (6, 0). 2(0) + 3y = 12 Let x = 0. y = 4 Solve for y. The y-intercept is 4, so plot the point (0, 4). Draw a line through the two points.

STANDARD FORM The equation of a vertical line cannot be written in slope-intercept form because the slope of a vertical line is not defined. Every linear equation, however, can be written in standard form— even the equation of a vertical line. HORIZONTAL AND VERTICAL LINES HORIZONTAL LINES The graph of y = c is a horizontal line through (0, c ). VERTICAL LINES The graph of x = c is a vertical line through (c , 0).

Graph y = 3 and x = –2 SOLUTION (0, 3) Graphing Horizontal and Vertical Lines Graph y = 3 and x = –2 x = –2 y = 3 SOLUTION The graph of y = 3 is a horizontal line that passes through the point (0, 3). Notice that every point on the line has a y-coordinate of 3. (0, 3) The graph of x = –2 is a vertical line that passes through the point (– 2, 0). Notice that every point on the line has an x-coordinate of –2. (–2, 0)