USING LOTTERIES TO APPROXIMATE THE OPTIMAL REVENUE Paul W. GoldbergUniversity of Liverpool Carmine VentreTeesside University.

Slides:



Advertisements
Similar presentations
Combinatorial Auction
Advertisements

Collusion-Resistant Mechanisms with Verification Yielding Optimal Solutions Carmine Ventre (University of Liverpool) Joint work with: Paolo Penna (University.
Auction Theory Class 5 – single-parameter implementation and risk aversion 1.
Class 4 – Some applications of revenue equivalence
Online Mechanism Design (Randomized Rounding on the Fly)
Prior-free auctions of digital goods Elias Koutsoupias University of Oxford.
Approximating optimal combinatorial auctions for complements using restricted welfare maximization Pingzhong Tang and Tuomas Sandholm Computer Science.
USING LOTTERIES TO APPROXIMATE THE OPTIMAL REVENUE Paul W. GoldbergUniversity of Liverpool Carmine VentreTeesside University.
Seminar in Auctions and Mechanism Design Based on J. Hartline’s book: Approximation in Economic Design Presented by: Miki Dimenshtein & Noga Levy.
Prompt Mechanisms for Online Auctions Speaker: Shahar Dobzinski Joint work with Richard Cole and Lisa Fleischer.
An Approximate Truthful Mechanism for Combinatorial Auctions An Internet Mathematics paper by Aaron Archer, Christos Papadimitriou, Kunal Talwar and Éva.
What I Really Wanted To Know About Combinatorial Auctions Arne Andersson Trade Extensions Uppsala University.
Auction Theory Class 3 – optimal auctions 1. Optimal auctions Usually the term optimal auctions stands for revenue maximization. What is maximal revenue?
A Prior-Free Revenue Maximizing Auction for Secondary Spectrum Access Ajay Gopinathan and Zongpeng Li IEEE INFOCOM 2011, Shanghai, China.
Part 1: Optimal Multi-Item Auctions Constantinos Daskalakis EECS, MIT Reference: Yang Cai, Constantinos Daskalakis and Matt Weinberg: An Algorithmic Characterization.
A Sufficient Condition for Truthfulness with Single Parameter Agents Michael Zuckerman, Hebrew University 2006 Based on paper by Nir Andelman and Yishay.
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
Yang Cai Oct 15, Interim Allocation rule aka. “REDUCED FORM” : Variables: Interim Allocation rule aka. “REDUCED FORM” : New Decision Variables j.
Online Scheduling with Known Arrival Times Nicholas G Hall (Ohio State University) Marc E Posner (Ohio State University) Chris N Potts (University of Southampton)
6.853: Topics in Algorithmic Game Theory Fall 2011 Matt Weinberg Lecture 24.
Maria-Florina Balcan Approximation Algorithms and Online Mechanisms for Item Pricing Maria-Florina Balcan & Avrim Blum CMU, CSD.
Collusion-Resistant Mechanisms with Verification Yielding Optimal Solutions Paolo Penna and Carmine Ventre.
Ron Lavi Presented by Yoni Moses.  Introduction ◦ Combining computational efficiency with game theoretic needs  Monotonicity Conditions ◦ Cyclic Monotonicity.
Item Pricing for Revenue Maximization in Combinatorial Auctions Maria-Florina Balcan, Carnegie Mellon University Joint with Avrim Blum and Yishay Mansour.
Limitations of VCG-Based Mechanisms Shahar Dobzinski Joint work with Noam Nisan.
Combinatorial Auction. Conbinatorial auction t 1 =20 t 2 =15 t 3 =6 f(t): the set X  F with the highest total value the mechanism decides the set of.
Competitive Generalized Auctions Paper by Amos Fiat, Andrew Goldberg, Jason Hartine, Anna Karlin Presented by Chad R. Meiners.
Competitive Auctions and Digital Goods Andrew Goldberg, Jason Hartline, and Andrew Wright presenting: Keren Horowitz, Ziv Yirmeyahu.
Competitive Analysis of Incentive Compatible On-Line Auctions Ron Lavi and Noam Nisan SISL/IST, Cal-Tech Hebrew University.
Yang Cai Sep 15, An overview of today’s class Myerson’s Lemma (cont’d) Application of Myerson’s Lemma Revelation Principle Intro to Revenue Maximization.
Noam Nisan Non-price Equilibria in Markets of Discrete goods Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Noam Nisan.
The Weighted Proportional Allocation Mechanism Milan Vojnović Microsoft Research Joint work with Thành Nguyen Harvard University, Nov 3, 2009.
Maria-Florina Balcan Mechanism Design, Machine Learning, and Pricing Problems Maria-Florina Balcan 11/13/2007.
Position Auctions Paper by Hal Varian, Presented by Rahul Jain.
Auction Theory Class 2 – Revenue equivalence 1. This class: revenue Revenue in auctions – Connection to order statistics The revelation principle The.
Mechanisms for Making Crowds Truthful Andrew Mao, Sergiy Nesterko.
CPS 173 Mechanism design Vincent Conitzer
Multi-Unit Auctions with Budget Limits Shahar Dobzinski, Ron Lavi, and Noam Nisan.
Auction Seminar Optimal Mechanism Presentation by: Alon Resler Supervised by: Amos Fiat.
More on Social choice and implementations 1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A Using slides by Uri.
Mechanism Design CS 886 Electronic Market Design University of Waterloo.
1 Deterministic Auctions and (In)Competitiveness Proof sketch: Show that for any 1  m  n there exists a bid vector b such that Theorem: Let A f be any.
Auction Theory תכנון מכרזים ומכירות פומביות Topic 7 – VCG mechanisms 1.
By: Amir Ronen, Department of CS Stanford University Presented By: Oren Mizrahi Matan Protter Issues on border of economics & computation, 2002.
Yang Cai Oct 08, An overview of today’s class Basic LP Formulation for Multiple Bidders Succinct LP: Reduced Form of an Auction The Structure of.
1 Competitive Auctions Authors: A. V. Goldberg, J. D. Hartline, A. Wright, A. R. Karlin and M. Saks Presented By: Arik Friedman and Itai Sharon.
Envy-Free Auctions for Digital goods A paper by Andrew V. Goldberg and Jason D. Hartline Presented by Bart J. Buter, Paul Koppen and Sjoerd W. Kerkstra.
Chapter 4 Bayesian Approximation By: Yotam Eliraz & Gilad Shohat Based on Chapter 4 on Jason Hartline’s book Seminar in Auctions and Mechanism.
Auctions for Digital Goods Ali Echihabi University of Waterloo – Nov 2004.
Market Design and Analysis Lecture 5 Lecturer: Ning Chen ( 陈宁 )
Strategyproof Auctions For Balancing Social Welfare and Fairness in Secondary Spectrum Markets Ajay Gopinathan, Zongpeng Li University of Calgary Chuan.
Topic 2: Designing the “optimal auction” Reminder of previous classes: Discussed 1st price and 2nd price auctions. Found equilibrium strategies. Saw that.
Unlimited Supply Infinitely many identical items. Each bidder wants one item. –Corresponds to a situation were we have no marginal production cost. –Very.
Algorithmic Mechanism Design: an Introduction Approximate (one-parameter) mechanisms, with an application to combinatorial auctions Guido Proietti Dipartimento.
AAMAS 2013 best-paper: “Mechanisms for Multi-Unit Combinatorial Auctions with a Few Distinct Goods” Piotr KrystaUniversity of Liverpool, UK Orestis TelelisAUEB,
Yang Cai Oct 06, An overview of today’s class Unit-Demand Pricing (cont’d) Multi-bidder Multi-item Setting Basic LP formulation.
Maria-Florina Balcan Mechanism Design, Machine Learning and Pricing Problems Maria-Florina Balcan Joint work with Avrim Blum, Jason Hartline, and Yishay.
Combinatorial Auctions without Money Dimitris Fotakis, NTUA Piotr Krysta, University of Liverpool Carmine Ventre, Teesside University.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.
Item Pricing for Revenue Maximization in Combinatorial Auctions Maria-Florina Balcan.
Automated mechanism design Vincent Conitzer
Approximation Algorithms for Combinatorial Auctions with Complement-Free Bidders Speaker: Shahar Dobzinski Joint work with Noam Nisan & Michael Schapira.
Comp/Math 553: Algorithmic Game Theory Lecture 10
Automated mechanism design
False-name Bids “The effect of false-name bids in combinatorial
Chapter 4 Bayesian Approximation
Competitive Auctions and Digital Goods
Automated mechanism design
Chapter 5. The Duality Theorem
Presentation transcript:

USING LOTTERIES TO APPROXIMATE THE OPTIMAL REVENUE Paul W. GoldbergUniversity of Liverpool Carmine VentreTeesside University

iTunes Store

Maximizing the revenue we_are_the_champions.mp3 £ 2.50 £ 3.00 iTunes Revenue = £ 2.97 Optimal Revenue = £ 8.00 More revenue!!!

Maximizing the revenue: eliciting “bids” we_are_the_champions.mp3 £2.50 £ 3.00 iTunes Revenue = £ 8.00 Optimal Revenue = £ 8.00 £ 2.50 £ 3.00 £ 2.50 £ 3.00 Promoted!?

Pay-what-you-say (aka 1 st price auction) weakness we_are_the_champions.mp3 £2.50 £ 3.00 iTunes Revenue = £ 0.03 Optimal Revenue = £ 8.00 £ 0.01 Fired! 1 st price

Incentive-compatibility (IC): truthfulness we_are_the_champions.mp3 v1v1 v1v1 b1b1 b1b1 v2v2 v2v2 b2b2 b2b2 v3v3 v3v3 b3b3 b3b3 is truthful Utility (v 1, b 2, b 3 ) ≥ Utility (b 1, b 2, b 3 ) for all b 1, b 2, b 3 def Utility (b 1, b 2, b 3 ) = v 1 – if song bought, 0 otherwise pricing(b 1, b 2, b 3 ) Def: Pricing truthful if all bidders are truthful pricing rule

IC: collusion-resistance we_are_the_champions.mp3 v1v1 v1v1 b1b1 b1b1 pricing rule v2v2 v2v2 b2b2 b2b2 v3v3 v3v3 b3b3 b3b3 Utility (b 1,b 2,b 3 ) + Utility (b 1,b 2,b 3 ) + Utility (b 1,b 2,b 3 ) maximized when bidders bid (v 1, v 2, v 3 ) def Pricing collusion- resistant

Designing “good” IC pricing rules We want to design IC pricing rules that approximate the optimal revenue as much as possible Not hard to see that “individually rational” deterministic pricing rules can only guarantee bad approximations Example: v 1, v 2, v 3 in {L,H}, L < H – aka, binary domain If bid vector is (L,L,L) then a bidder has to be charged at most L Bid vector (H,L,L): opt=H+2L, revenue=3L, apx ratio ≈ H/L v1v1 v1v1 v2v2 v2v2 v3v3 v3v3

Pricing “lotteries” We propose to price lotteries akin to [Briest et al, SODA10] Pay something for a chance to win the song A lottery has two components: Price p Win probability λ Risk-neutral bidders: Utility ( ) = λ * v 1 - p we_are_the_champions.mp3 v1v1 v1v1 v2v2 v2v2 v3v3 v3v3 b1b1 b1b1 b2b2 b2b2 b3b3 b3b3 Fact: Lotteries truthful iff λ i (b i, b -i ) ≥ λ i (b i ’, b -i ) iff b i ≥ b i ’ and collusion-resistant iff truthful and singular, ie, λ i (b i, b -i ) = λ i (b i, b’ -i ) for all b -i, b’ -i Fact: Lotteries truthful iff λ i (b i, b -i ) ≥ λ i (b i ’, b -i ) iff b i ≥ b i ’ and collusion-resistant iff truthful and singular, ie, λ i (b i, b -i ) = λ i (b i, b’ -i ) for all b -i, b’ -i

Lotteries for binary domains {L,H} Let us consider the following lottery: λ(L) = ½, priced at L/2 λ(H) = 1, priced at H/2 Properties collusion-resistant truthful since monotone non-decreasing singular (offer depends only on the bidder’s bid) anonymous (no bidder id used) approximation guarantee: ½ Tweaking the probabilities we can achieve an approximation guarantee of (2H-L)/H Can a truthful lottery do any better?

Summary of results

Lower bound technique, step 1: Upper bounding the payments Take any truthful lottery (λ j, p j ) for bidder j By individual rationality, the lottery must satisfy L * λ j (L, b -j ) – p j (L, b -j ) ≥ 0 in case j has type L By truthfulness, the lottery must satisfy H * λ j (H, b -j ) – p j (H, b -j ) ≥ H * λ j (L, b -j ) – p j (L, b -j ) in case j has type H We then have the following upper bounds on the payments p j (L, b -j ) ≤ L * λ j (L, b -j ) p j (H, b -j ) ≤ H * λ j (H, b -j ) – H * λ j (L, b -j ) + p j (L, b -j ) ≤ H – (H–L) * λ j (L, b -j )

Lower bound technique, step 2: setting up a linear system Requesting an approximation guarantee better than α implies α * Σ j p j (b) > OPT(b) = H * n H (b) + L * n L (b) for all bid vectors b In step 1, we obtained the following upper bounds on the payments: p j (L, b -j ) ≤ L * λ j (L, b -j ) p j (H, b -j ) ≤ H – (H–L) * λ j (L, b -j ) Then, to get a better than α approximation of OPT the following system of linear inequalities must be satisfied – (H–L) Σ j bidding H in b λ j (L, b -j ) + L Σ j bidding L in b λ j (L, b -j ) > H * n H (b) * (α-1)/α – L * n L (b) * 1/α for any bid vector b x j (b -j )

Lower bound technique, step 3: Carver’s theorem [Carver, 1922] – (H–L) Σ j bidding H in b x j (b -j ) + L Σ j bidding L in b x j (b -j ) > H * n H (b) * (α-1)/α – L * n L (b) * 1/α for any bid vector b n = 2 #bidders - 1 m = 2 #bidders - β i Σ j α ij x j

Lower bound technique, step 4: finding Carver’s constants (2 bidders) – (H–L) Σ j bidding H in b x j (b -j ) + L Σ j bidding L in b x j (b -j ) > H * n H (b) * (α-1)/α – L * n L (b) * 1/α for any bid vector b (LL) L x 1 (L) + L x 2 (L) > – L * 2 * 1/α (LH) L x 1 (H) – (H–L) x 2 (L) > H * (α-1)/α – L * 1/α (HL) – (H–L) x 1 (L) + L x 2 (H) > H * (α-1)/α – L * 1/α (HH)– (H–L) x 1 (H) – (H–L) x 2 (H) > H * 2 * (α-1)/α HH HL LH LL

weighted sum is function of α only weighted sum is 0 Lower bound: concluding the proof L x 1 (L) + L x 2 (L) + L * 2 * 1/α L x 1 (H) – (H–L) x 2 (L) – H * (α-1)/α + L * 1/α – (H–L) x 1 (L) + L x 2 (H) – H * (α-1)/α + L * 1/α – (H–L) x 1 (H) – (H–L) x 2 (H) – H * 2 * (α-1)/α weighted sum is non-positive Lottery cannot apx better than αSystem does not have solutionsk m+1 ≥ 0 α ≤ (2H-L)/H

Extension to any finite domain Upper bound For a domain of size d, we can easily get a d-approximation of OPT with a collusion-resistant lottery Straightforward generalization of the upper bound for {L,H} domain Lower bound Given a 3-value domain {L,M,H}, we get by using the previous argument a bound of (3HM−HL−M 2 )/(HM)… … which is not very nice and scarcely informative By working on the system built in step 2, we can prove that for any d and ε>0, there exist d values such that no truthful lottery can approximate OPT better than d-ε over the domain given by those values (Non-trivial) generalization of the lower bound for binary domains

Lotteries for domains [1,H] Easy to come up with an anonymous collusion-resistant lottery guaranteeing a ln(H)+1 approximation of OPT Bidder bidding b wins with probability ln(e*b)/ln(e*H) Matching Lower bound can be proved for any truthful lottery over [1,H] Proof uses… … a technique designed for universally truthful auctions by [Goldberg et al, GEB 2006]… … and a bijection between truthful lotteries and universally truthful auctions E.g., the ½-approximating lottery for {L,H} can be viewed as a uniform distribution over two simple auctions charging H and L, respectively

Related literature Focus for “competitive auctions” [Goldberg et al, GEB 2006] is on F (2) rather than OPT, as OPT is “impossible” to approximate This research can then also be seen as the study of the implications of the knowledge of the domain on the approximation of OPT Moreover, lotteries are a more natural interpretation of universally truthful auctions In certain cases (ie, when Cumulative Distribution Functions do not have Probability density functions) lotteries are far more expressive than randomized auctions

Conclusions & future research We show that there is no separation between collusion- resistant and truthful lotteries for digital goods, when approximating OPT = We introduce a new lower bounding technique based on Carver’s result about inconsistent systems of linear inequalities The technique of [Goldberg et al, GEB 2006] does not allow to prove asymptotic bounds in terms of the size of the domains Further applications/implications of Carver’s theorem? Lotteries for settings different than digital goods? E.g., goods with limited supply