Data Warehousing Lab. M.S. 1 HyeJung Yoon

Slides:



Advertisements
Similar presentations
Online Analytical Processing OLAP
Advertisements

Data Warehousing CPS216 Notes 13 Shivnath Babu. 2 Warehousing l Growing industry: $8 billion way back in 1998 l Range from desktop to huge: u Walmart:
OLAP Services Business Intelligence Solutions. Agenda Definition of OLAP Types of OLAP Definition of Cube Definition of DMR Differences between Cube and.
Data Warehousing M R BRAHMAM.
Tools You Own Maggie Moehringer AIRPO, June 2006.
Exploiting the DW data DW is a platform for creating a wide array of reports It solves data feed problems, but does not lead to specific decision support.
Advanced Querying OLAP Part 2. Context OLAP systems for supporting decision making. Components: –Dimensions with hierarchies, –Measures, –Aggregation.
Chapter 15 Data Warehousing, OLAP, and Data Mining
Accelerated Access to BW Al Weedman Idea Integration.
COMP 578 Data Warehousing And OLAP Technology Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University.
INTRODUCTION TO OLAP MIS 497. Why OLAP? Online Analytical Processing vs. Online Transaction Processing Online Analytical Processing vs. Online Transaction.
Chapter 2: Data Warehousing
CS2032 DATA WAREHOUSING AND DATA MINING
Chapter 13 The Data Warehouse
How Business Intelligence Software Works and a Brief Overview of Leading Products Jai Windsor MIS 5973 December 8, 2005.
MANAGEMENT SUPPORT SYSTEMS II 2. Enterprise Decision Support Systems 1.
Online Analytical Processing (OLAP) Hweichao Lu CS157B-02 Spring 2007.
Data Warehousing & OLAP Nuosang Du Jon B. Arnason CSCI 5707 November 19, 2013.
Understanding Analysis Services Architecture. Microsoft Data Warehousing Overview OLTP Source DTS DW Storage Analysis Services Clients OLE DB for OLAP,
Designing a Data Warehouse Issues in DW design. Three Fundamental Processes Data Acquisition Data Storage Data a Access.
Week 6 Lecture The Data Warehouse Samuel Conn, Asst. Professor
Data Warehouse & Data Mining
Multi-Dimensional Databases and On-Line Analytical Processing Dominic Cutuli John Lundgren Clark Mitchell Leslie Theiss Ken Zenkevich.
Introduction to OLAP / Microsoft Analysis Services
DW-1: Introduction to Data Warehousing. Overview What is Database What Is Data Warehousing Data Marts and Data Warehouses The Data Warehousing Process.
Ahsan Abdullah 1 Data Warehousing Lecture-11 Multidimensional OLAP (MOLAP) Virtual University of Pakistan Ahsan Abdullah Assoc. Prof. & Head Center for.
OnLine Analytical Processing (OLAP)
Datawarehouse Objectives
1 Data Warehouses BUAD/American University Data Warehouses.
OLAP & DSS SUPPORT IN DATA WAREHOUSE By - Pooja Sinha Kaushalya Bakde.
CSS/417 Introduction to Database Management Systems Workshop 4.
Publishing Data for the Users (Chapter18) Data Warehousing Lab. Semester 2 HyunSuk Jung.
1 Topics about Data Warehouses What is a data warehouse? How does a data warehouse differ from a transaction processing database? What are the characteristics.
MANAGING DATA RESOURCES ~ pertemuan 7 ~ Oleh: Ir. Abdul Hayat, MTI.
13 1 Chapter 13 The Data Warehouse Database Systems: Design, Implementation, and Management, Seventh Edition, Rob and Coronel.
13 1 Chapter 13 The Data Warehouse Database Systems: Design, Implementation, and Management, Seventh Edition, Rob and Coronel.
Agenda  What is Business Intelligence ?  Why do organisations use it?  BI tools overview.
Ayyat IT Group Murad Faridi Roll NO#2492 Muhammad Waqas Roll NO#2803 Salman Raza Roll NO#2473 Junaid Pervaiz Roll NO#2468 Instructor :- “ Madam Sana Saeed”
OLAP in DWH Ján Genči PDT. 2 Outline OLAP Definitions and Rules The term OLAP was introduced in a paper entitled “Providing On-Line Analytical.
A POWER OF OLAP TECHNOLOGY National Technical University of Ukraine “Kiev Polytechnic Institute” Heat and energy design faculty Department of automation.
Business Intelligence Transparencies 1. ©Pearson Education 2009 Objectives What business intelligence (BI) represents. The technologies associated with.
What is OLAP?.
CSE 5331/7331 F'071 CSE 5331/7331 Fall 2007 Dimensional Modeling Margaret H. Dunham Department of Computer Science and Engineering Southern Methodist University.
1 Database Systems, 8 th Edition 1 Chapter 13 Business Intelligence and Data Warehouses Objectives In this chapter, you will learn: –How business intelligence.
Cognos 8 BI Product Overview Cognos 8 BI. Objectives  In this module we will examine:  Cognos 8 Business Intelligence  key themes of Cognos 8 Business.
Summary Cognos 8 BI. Objectives  In this module we will examine:  major innovations in Cognos 8  review of new functionality in Cognos 8  customer.
SQL Server Analysis Services Understanding Unified Dimension Model (UDM)
Platinum DecisionBase1 DW Product Platinum - Computer AssociatesDecisionBase Hyunsook Lim Database Laboratory Dept. of CSE.
1 Database Systems, 8 th Edition Star Schema Data modeling technique –Maps multidimensional decision support data into relational database Creates.
Introduction to OLAP and Data Warehouse Assoc. Professor Bela Stantic September 2014 Database Systems.
An Overview of Data Warehousing and OLAP Technology
Presented By: Pedel Oppong-Abebrese,Pedel Oppong-Abebrese Michael Boadi, William Osei, Nana Amoa OforiMichael BoadiWilliam OseiNana Amoa Ofori DATA WAREHOUSING.
Prof. HeleMai Haav: CSC 230 Spring *03 Overview: Databases.
Data Warehousing CIS 4301 Lecture Notes 4/20/2006.
Chapter 13 Business Intelligence and Data Warehouses
Chapter 13 The Data Warehouse
OLAP – On Line Analytical Processing
Three tier Architecture of Data Warehousing
What is OLAP OLAP allows to model data in a multidimensional way like a data cube in order to look for the data from many perspectives.
IBM COGNOS online Training at GoLogica Technologies
Data Warehouse.
MANAGING DATA RESOURCES
Components of the Data Warehouse Michael A. Fudge, Jr.
Data Warehouse and OLAP
Types of OLAP Servers.
DataMart (Data Warehouse) Tool:
Introduction of Week 9 Return assignment 5-2
Data Warehouse and OLAP
Data-warehouse layers
Presentation transcript:

Data Warehousing Lab. M.S. 1 HyeJung Yoon CHAPTER 20 OLAP Data Warehousing Lab. M.S. 1 HyeJung Yoon

Definition What is OLAP? 최종 사용자(end-user)가 다차원 정보에 직접 접근하여 대화식으로 정보를 분석하고 의사결정에 활용하는 과정 DW와 OLAP 차이점 DW is used to effectively store information OLAP is used for efficient information retrieval 관계: DW and OLAP complement each other DW store the data necessary for strategic decision making OLAP allows calculations, time-series analysis, and complex modeling.

Dimensions The essential units of an OLAP database are its dimensions OLAP topology Design. When? What? Where? Who? Time(when?) Product(what?) Geography(where?) Salesperson(who?) 4 dimensions Idea of multidimensional data array 이러한 multidimensional data 배열은 X축, Y출, Z축 등으로 표현할 수가 있는데 이러한 축은 2-3개가 아닌 그 이상도 될 수가 있다. 이러한 것들은 olap툴로 제한이 가능하다.

Cell & Cube Cell The intersection of multiple dimensions produces a location Contains the intersecting value within all the dimensions Cube Store multidimensional data Rubik’s Cube Robik의 큐브는 소련에서 개발된 것으로, 1980년대 큰 인기를 누렸다. 큐브는 많은 Dimension들을 자유로이 변화시키고, 돌리는것이 자유롭기 때문에 OLAP에서 이러한 개념을 따서 큐브를 생성하였다.

What is MOLAP, ROLAP, DOLAP How the data is physically stored? MOLAP(multidimensional OLAP) ROLAP(relational OLAP) DOLAP(desktop OLAP) 구 분 DOLAP MOLAP HOLAP ROLAP DB 형태 지원 가능 DB 크기 2-10 MB 10-50 GB 50-100 GB 1 TB < 데이터 저장 위치 Client PC Client PC Client & Server Server RDBMS 통합 불가 단순한 select Custom VLDB 지원 어플리케이션 통합 독립 느슨하게 결합 까다롭다 자연스러운 확장 전형적인 활용 그룹 부서 부서 기업 Brio,Sagent Cognos, Business Objects Oracle Express, Hyperion Solutions Microsoft, Seagate MicroStrategy, Eureka, Informix 제 품

MOLAP와 ROLAP Tool 비교(1/2) ROLAP 계열의 제품 중에서는 DSS Agent와 Decision Suite가 용량이 큰 서버이고 고가이다. BusinessObjects 제품은 ROLAP 제품으로서 MOLAP 방식의 분석 기능을 제공한다. MOLAP 계열의 제품 중에서는 Oracle Express와 Hyperion Essbase가 용량이 큰 서버이고 고가이다. Cognos PowerPlay 제품은 Desktop MOLAP 제품으로 부서단위 업무분석 도구로 많이 활용되고 있다.

MOLAP와 ROLAP Tool 비교(2/2) 1) MOLAP 도구(Tools) ① Hyperion사의 Essbase ② Cognos PowerPlay ③ Comshare사의 commander EIS/OLAP ④ Oracle사의 Express ⑤ Sciences사의 Gentia 2) ROLAP 도구(Tools) ① BusinessObjects사의 BusinessObjects ② Microstrategy사의 DSS Agent ③ Brio Technology사의 Brio Query ④ Infomix사의 MetaCube ⑤ Information Advantage사의 Decision Support Suite ⑥ Oracle사의 Discoverer

MOLAP 장점 Very robust calculation and aggregation capabilities Computation and calculation functionality far above the limits of standard SQL Ability to use any kind of derived and calculated measures 적용분야 Where the data can be broken up into smaller pieces The smaller sets, the quicker the compilation times Financial application

OLAP tools OLAP tools must have the characteristics Ability to drill down into the data Ability to swap dimensions Allow alterations in the appearance of the displayed data

Cognos Transformer(1/3) OLAP tools usually have two components: administrator and the end user tool Powerplay and Transformer What is Transformer? 기업의 대규모 2차원적 데이터를 Transformer를 통해서 PowerCube라고 하는 고도로 압축된 다차원 DB 형태로 바꿔준다 Define the dimension(qualitative data) and measures(quantitative data) like Data warehouse Create a dimensional map that forms the basis of our data cube

Cognos Transformer(2/3) Dimensional Mapping Sample

Cognos Transformer(3/3) Star schema와 같은 방식으로 작동된다. AutoDesign: review the File containing the column headings and performs a low-level analysis upon it to determine an initial dimension map

Cognos Powerplay(1/3) Cognos PowerPlay는 기존의 보고서 작성 및 비즈니스 분석 담당자로 하여금 다차원 분석 및 웹, 윈도우, 엑셀 환경에서 OLAP(Online Analytical Processing) 보고서를 생성할 수 있도록 한다.

Cognos Powerplay(2/3) Drilldown

Cognos Powerplay(3/3) Swap Dimensions

Cognos Powerplay Architecture (1/2) Traditional Powerplay archintecture Read cubes form server Desktop user Read data Creates cubes DW downloads cubes Transformer File Server Laptop user

Cognos Powerplay Architecture (2/2) Remote user Cognos Powerplay Architecture (2/2) Powerplay Enterprise Server archintecture internet Oracle 8i Network Database Server Powerplay Server Firewall Desktop user LDAP Server Laptop user

Microstrategy Solution Microstrategy has chosen olap architecture that lends itself to many users over many different paths: computer, fax, pager, phone, and PDA Microstrategy Architect Microstrategy Intelligence Server Microstrategy Agent Microstrategy Web

MicroStrategy Architect or or or or No lookups Star Snowflake Sparse Aggregate Multi-Snowflake Complex Sparsely-Aggregated

MicroStrategy Intelligence Server Client-Server Model Microstrategy Intelligence Server

MicroStrategy Desktop MicroStrategy Desktop은 사용자들로 하여금 자신들의 업무에 관해 쉽고 빠르게 의사결정을 할 수 있도록 도움을 주고 Data surfing, Data Pivoting, Dynamic Calculation, Drill-up, Drill-down, Drill-across, Page-By 등과 같은 보다 향상된 분석적 기능들을 제공한다. Best-In-Class Drilling & Surfing Industry Leading Analysis - Ranking

MicroStrategy Web MicroStrategy Web은 OLAP을 인터넷 상으로 가져오며, Web Browser상에서 다중 분석을 가능하게 해준다. 또한 사용하기 쉽고, 분석적인 측면에 있어서 유연한 Pure HTML을 지원하므로 운영환경에 제약이 없다. Easy-to-Use, Intuitive Interface Drilling & Pivoting Graphs & Charts