Relational Operator Evaluation. Overview Index Nested Loops Join If there is an index on the join column of one relation (say S), can make it the inner.

Slides:



Advertisements
Similar presentations
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Evaluation of Relational Operations Chapter 12, Part A.
Advertisements

Implementation of relational operations
Lecture 13: Query Execution. Where are we? File organizations: sorted, hashed, heaps. Indexes: hash index, B+-tree Indexes can be clustered or not. Data.
1 Overview of Query Evaluation Chapter Outline  Query Optimization Overview  Algorithm for Relational Operations.
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 14, Part B.
Implementation of Other Relational Algebra Operators, R. Ramakrishnan and J. Gehrke1 Implementation of other Relational Algebra Operators Chapter 12.
Database Management Systems, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
Database Management Systems, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
1 Overview of Query Evaluation Chapter Objectives  Preliminaries:  Core query processing techniques  Catalog  Access paths to data  Index matching.
Implementation of Relational Operations CS186, Fall 2005 R&G - Chapter 14 First comes thought; then organization of that thought, into ideas and plans;
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Query Evaluation Chapter 12.
1 Implementation of Relational Operations Module 5, Lecture 1.
Evaluation of Relational Operators 198:541. Relational Operations  We will consider how to implement: Selection ( ) Selects a subset of rows from relation.
1  Simple Nested Loops Join:  Block Nested Loops Join  Index Nested Loops Join  Sort Merge Join  Hash Join  Hybrid Hash Join Evaluation of Relational.
SPRING 2004CENG 3521 Join Algorithms Chapter 14. SPRING 2004CENG 3522 Schema for Examples Similar to old schema; rname added for variations. Reserves:
Implementation of Relational Operations CS 186, Spring 2006, Lecture 14&15 R&G Chapters 12/14 First comes thought; then organization of that thought, into.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Query Evaluation Chapter 12.
Query Processing 1: Joins and Sorting R&G, Chapters 12, 13, 14 Lecture 8 One of the advantages of being disorderly is that one is constantly making exciting.
Query Optimization II R&G, Chapters 12, 13, 14 Lecture 9.
Query Optimization 3 Cost Estimation R&G, Chapters 12, 13, 14 Lecture 15.
Introduction to Database Systems 1 Join Algorithms Query Processing: Lecture 1.
1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
1 Evaluation of Relational Operations Yanlei Diao UMass Amherst March 01, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
Evaluation of Relational Operations. Relational Operations v We will consider how to implement: – Selection ( ) Selects a subset of rows from relation.
1 Implementation of Relational Operations: Joins.
Query Processing 2: Sorting & Joins
Overview of Implementing Relational Operators and Query Evaluation
1 Implementation of Relational Operations Chapters 12 ~ 14.
1 Overview of Query Evaluation Chapter Overview of Query Evaluation  Plan : Tree of R.A. ops, with choice of alg for each op.  Each operator typically.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Query Evaluation Chapter 12.
CPSC 404, Laks V.S. Lakshmanan1 Evaluation of Relational Operations: Other Operations Chapter 14 Ramakrishnan & Gehrke (Sections ; )
Lec3/Database Systems/COMP4910/031 Evaluation of Relational Operations Chapter 14.
RELATIONAL JOIN Advanced Data Structures. Equality Joins With One Join Column External Sorting 2 SELECT * FROM Reserves R1, Sailors S1 WHERE R1.sid=S1.sid.
Database Systems/comp4910/spring20031 Evaluation of Relational Operations Why does a DBMS implements several algorithms for each algebra operation? What.
Implementing Natural Joins, R. Ramakrishnan and J. Gehrke with corrections by Christoph F. Eick 1 Implementing Natural Joins.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Implementing Relational Operators and Query Evaluation Chapter 12.
1 Database Systems ( 資料庫系統 ) December 7, 2011 Lecture #11.
1 Database Systems ( 資料庫系統 ) December 19, 2004 Lecture #12 By Hao-hua Chu ( 朱浩華 )
CPSC 404, Laks V.S. Lakshmanan1 Evaluation of Relational Operations – Join Chapter 14 Ramakrishnan and Gehrke (Section 14.4)
Query Execution. Where are we? File organizations: sorted, hashed, heaps. Indexes: hash index, B+-tree Indexes can be clustered or not. Data can be stored.
Implementation of Relational Operations R&G - Chapter 14 First comes thought; then organization of that thought, into ideas and plans; then transformation.
Database Management Systems 1 Raghu Ramakrishnan Evaluation of Relational Operations Chpt 14.
Hash Tables and Query Execution March 1st, Hash Tables Secondary storage hash tables are much like main memory ones Recall basics: –There are n.
Relational Operator Evaluation. overview Projection Two steps –Remove unwanted attributes –Eliminate any duplicate tuples The expensive part is removing.
Implementation of Database Systems, Jarek Gryz1 Evaluation of Relational Operations Chapter 12, Part A.
Query Execution Query compiler Execution engine Index/record mgr. Buffer manager Storage manager storage User/ Application Query update Query execution.
Alon Levy 1 Relational Operations v We will consider how to implement: – Selection ( ) Selects a subset of rows from relation. – Projection ( ) Deletes.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Evaluation of Relational Operations Chapter 14, Part A (Joins)
Database Applications (15-415) DBMS Internals- Part VIII Lecture 19, March 29, 2016 Mohammad Hammoud.
Relational Operator Evaluation. Application Programmer (e.g., business analyst, Data architect) Sophisticated Application Programmer (e.g., SAP admin)
Implementation of Relational Operations Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY courtesy of Joe Hellerstein, Mike Franklin, and etc for.
Database Applications (15-415) DBMS Internals- Part VIII Lecture 17, Oct 30, 2016 Mohammad Hammoud.
Database Systems (資料庫系統)
Evaluation of Relational Operations
Evaluation of Relational Operations: Other Operations
Relational Operations
Database Applications (15-415) DBMS Internals- Part VII Lecture 19, March 27, 2018 Mohammad Hammoud.
CS222P: Principles of Data Management Notes #12 Joins!
Introduction to Database Systems
CS222: Principles of Data Management Notes #12 Joins!
Overview of Query Evaluation
Implementation of Relational Operations
Evaluation of Relational Operations: Other Techniques
Overview of Query Evaluation: JOINS
Evaluation of Relational Operations: Other Techniques
CS222/CS122C: Principles of Data Management UCI, Fall Notes #11 Join!
CS222P: Principles of Data Management UCI, Fall 2018 Notes #11 Join!
Presentation transcript:

Relational Operator Evaluation

Overview

Index Nested Loops Join If there is an index on the join column of one relation (say S), can make it the inner and exploit the index. –Cost: M + ( (M*pR) * cost of finding matching S tuples) For each R tuple, cost of probing S index is about 1.2 for hash index, 2-4 for B+ tree. Cost of then finding S tuples (assuming Alt. (2) or (3) for data entries) depends on clustering. –Clustered index: 1 I/O (typical), unclustered: upto 1 I/O per matching S tuple. foreach tuple r in R do foreach tuple s in S where ri == sj do add to result

Index Nested Loop Join RS Tuple Index ||R|| tuples 1 probe per R tuple

Examples of Index Nested Loops Hash-index (Alt. 2) on sid of Sailors (as inner): –Scan Reserves: 1000 page I/Os, 100*1000 tuples. –For each Reserves tuple: 1.2 I/Os to get data entry in index, plus 1 I/O to get (the exactly one) matching Sailors tuple. Total: 220,000 I/Os. Hash-index (Alt. 2) on sid of Reserves (as inner): –Scan Sailors: 500 page I/Os, 80*500 tuples. –For each Sailors tuple: 1.2 I/Os to find index page with data entries, plus cost of retrieving matching Reserves tuples. –Assuming uniform distribution, 2.5 reservations per sailor (100,000 / 40,000). Cost of retrieving them is varying between and 40000*2.5 for unclustered index on Reserves –If it is clustered index on Reserves, I/O cost is 40000

Sort-Merge Join Basic Idea: –External Sort R and S on the join column, then scan them to do a ``merge’’ (on join col.), and output result tuples. –Using sorting identify partitions Procedure –Advance scan of R until current R-tuple >= current S tuple, then advance scan of S until current S-tuple >= current R tuple; do this until current R tuple = current S tuple. –At this point, all R tuples with same value in Ri (current R group) and all S tuples with same value in Sj (current S group) match; output for all pairs of such tuples. –Then resume scanning R and S. R is scanned once; each S group is scanned once per matching R tuple. (Multiple scans of an S group are likely to find needed pages in buffer.) Refinement: We can combine the merging phases in the sorting of R and S with the merging required for the join.

Example of Sort-Merge Join Cost: M log M + N log N + (M+N) –The cost of scanning, M+N, could be M*N (very unlikely!) With 100 buffer pages, both Reserves and Sailors can be sorted in 2 passes; total join cost: 2*(500*2+1000*2) =7500.

Hash Join Basic idea: using hashing to identify partitions Procedure –Partitioning phase: identify partitions in R and S Partition both relations using hash fn h: R tuples in partition i will only match S tuples in partition i. –Probing phase: testing equality join conditions Read in a partition of R, hash it using h2 (<> h!). Scan matching partition of S, search for matches.

Partitioning phase

Probing phase

Observations on Hash-Join #partitions k = size (# of pages) of largest partition to be held in memory. Assuming uniformly sized partitions, and maximizing k, we get: –k= B-1, and M/(B-1) If we build an in-memory hash table to speed up the matching of tuples, a little more memory is needed. If the hash function does not partition uniformly, one or more R partitions may not fit in memory. Can apply hash-join technique recursively to do the join of this R- partition with corresponding S-partition.

Cost of Hash-Join In partitioning phase, read+write both relns; 2(M+N). In matching phase, read both relns; M+N I/Os. In our running example, this is a total of 4500 I/Os. Sort-Merge Join vs. Hash Join: –For Hash-join, B>M 1/2, where M is the smaller relation –For Sort-merge Join, B>N 1/2, where N is the larger relation –Given a minimum amount of memory both have a cost of 3(M+N) I/Os. Hash Join superior on this count if relation sizes differ greatly. Also, Hash Join shown to be highly parallelizable. –Sort-Merge less sensitive to data skew; result is sorted.

General Join Conditions Equalities over several attributes (e.g., R.sid=S.sid AND R.rname=S.sname): –For Index NL, build index on (if S is inner); or use existing indexes on sid or sname. –For Sort-Merge and Hash Join, sort/partition on combination of the two join columns. Inequality conditions (e.g., R.rname < S.sname): –For Index NL, need (clustered!) B+ tree index. Range probes on inner; # matches likely to be much higher than for equality joins. –Hash Join, Sort Merge Join not applicable. –Block NL quite likely to be the best join method here.

Set Operations Intersection and cross-product special cases of join. –Intersection: equality on all fields –Cross-product: no equality condition Union (Distinct) and Except similar; we’ll do union. Sorting based approach to union: –Sort both relations (on combination of all attributes). –Scan sorted relations and merge them, discard duplicates. –Alternative: Merge runs from Pass 0 for both relations. Hash based approach to union: –Partition R and S using hash function h. –For each S-partition, build in-memory hash table (using h2), scan corr. R-partition and add tuples to table while discarding duplicates.

Aggregate Operations (AVG, MIN, etc.) Without grouping: –In general, requires scanning the relation. –Given index whose search key includes all attributes in the SELECT or WHERE clauses, can do index-only scan. With grouping: –Sort on group-by attributes, then scan relation and compute aggregate for each group. (Can improve upon this by combining sorting and aggregate computation.) –Similar approach based on hashing on group-by attributes. Given tree index whose search key includes all attributes in SELECT, WHERE and GROUP BY clauses, can do index-only scan; if group-by attributes form prefix of search key, can retrieve data entries/tuples in group-by order, avoiding sorting or partitioning.

Summary of operator evaluation A virtue of relational DBMSs: queries are composed of a few basic operators; the implementation of these operators can be carefully tuned (and it is important to do this!). Many alternative implementation techniques for each operator; no universally superior technique for most operators. Must consider available alternatives for each operation in a query and choose best one based on system statistics, etc. This is part of the broader task of optimizing a query composed of several ops.