© 2001 by KJS 5장 고성능 액체크로마토그래피(1).

Slides:



Advertisements
Similar presentations
D e t e c t o r s f o r H P L C.
Advertisements

Liquid chromatography coupled with Mass spectroscopy
FC-MS from Teledyne Isco CombiFlash ® a Name You Can Rely On.
GC & LC.
High Performance Liquid Chromatography. HPLC originally refered to: High Pressure Liquid Chromatography currently refers to: High Precision Liquid Chromatography.
Small particles (3-10  m) give high performance but require high pressure 1. Scope of LC Four types of liquid chromatography -Partition - Adsorption (liquid-solid)
HPLC Systems. Column Chromatography HPLC Modes HPLC – System Components.
LC-MS Based Metabolomics. Analysing the METABOLOME 1.Metabolite Extraction 2.Metabolite detection (with or without separation) 3.Data analysis.
1 Chapter 24 GC Gas Chromatography. 2 GC Mechanism of separation is primarily volatility. Difference in boiling point, vapor pressure etc. What controls.
Chromatographic detectors for Liquid Chromatography.
LC-MS Lecture 7.
High Performance Liquid Chromatography. HPLC originally refered to: High Pressure Liquid Chromatography currently refers to: High Precision Liquid Chromatography.
Evaporative Light Scattering Detector
An introduction to chromatography. To identify the compounds of a mixture = qualitative analysis To quantify these compounds To retrieve the separated.
HPLC Bulk Property Detectors
Chapter 22 GC & LC Gas Chromatography -1 1.Schematic diagram.
Pn. Suryati Bt. Syafri 2009 High Performance Liquid Chromatography (HPLC)
CHAPTER 29 Supercritical Fluid Chromatography The mobile phase is a supercritical fluid (a fluid above its critical T and critical pressure) Supercritical.
High Performance Liquid Chromatography High Performance Liquid Chromatography Chem. 331.
Analytical Chemistry Section D Separation Techniques.
Chapter 22 GC & LC Gas Chromatography 1.Schematic diagram.
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC). When particles of small diameter (microns) are used as a stationery phase support, the technique is called.
Introduction to High Performance Liquid Chromatography.
High Performance Liquid Chromatography
ANALYTICAL CHEMISTRY CHEM 3811 CHAPTER 22 DR. AUGUSTINE OFORI AGYEMAN Assistant professor of chemistry Department of natural sciences Clayton state university.
Magnet Analytical Chemistry Unit 4
High Performance Liquid Chromatography (HPLC) Jeannette Comeau CHEE April 2004.
HPLC.
GC Advantages 1. Very Large N (Very Long Columns) 2. No Packing Material (A=0) 3. Simple Mobile Phase (Compressed Gas) 4. Universal Detectors (FID) 5.
Chromatography vObjective  To understand the principles of chromatography and know the specific types of Chromatograph used in the analysis of environmental.
High Performance Liquid Chromatography Instrumentation.
1. Fast Protein Liquid Chromatography 2 FPLC A semi-automatic microprocessor controlled machine used primarily for the separation of macromolecules A.
History of Chromatography n Early LC carried out in glass columns n diameters: 1-5 cm n lengths: cm n Size of solid stationary phase n diameters:
Gihan Gawish.Dr High Performance Liquid Chromatography.
SoSe 2006 Alexander Semmler: HPLC 1 Alexander Semmler HPLC High pressure liquid chromatography High performance -‘‘-
Analytical Separations
High Performance Liquid Chromatography High Performance Liquid Chromatography Presented by- MOHSIN NISAR KHAN MOHSIN NISAR KHAN.
HPLC – High Performance Liquid Chromatography
Introduction  High-performance liquid chromatography (HPLC) is a form of liquid chromatography.liquid chromatography  The main purpose is to separate.
LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY
1 HPLC Lecture Displacement pumps Displacement pumps, on the other hand, is composed of a one directional motor driven plunger that pushes the mobile.
Best Broken into four categories
Chromatography High Performance Liquid Chromatography HPLC Chapter Dr Gihan Gawish.
HPLC.
1 Principle  LC-MS is interfacing HPLC system with mass spectrometer.  The difficulty in hyphenation is to transform the solute into gas phase ion. 
High Performance Liquid Chromatography
Chapter 28 High Performance Liquid Chromatography.
Varian 920-LC Competitors. 2 Varian 920-LC Market Competitors Competitors Shimadzu Waters Agilent Dionex The 920-LC presents a significant step forward.
HPLC.
Comparison of the Varian 920-LC with Agilent 1200 Series HPLC.
LIQUID CHROMATOGRAPHY – MASS SPECTROSCOPY (LC-MS) Presented by Md Akbar Siddiq Khan M.Pharm Nizam College Of Pharmacy Hyderabad - A.P.
LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS)
High Performance Liquid Chromatography (HPLC) b What is HPLC? b Types of Separations b Columns and Stationary Phases b Mobile Phases and Their Role in.
High Performance Liquid Chromatography. What is HPLC ? It is a separation technique that involves: Injection of small volume of liquid sample Into a tube.
High Performance Liquid Chromatography Presented by Dr. Kamal Modi 2 nd Year Resident.
High Performance Liquid Chromatography
High-Performance Liquid Chromatography HPLC, when GC won’t cut it!!!
HPLC.
HPLC Equipment : Detectors
Chromatographic separation
Best Broken into four categories
HPLC.
High Performance Liquid Chromatography
BASICS OF SUPERCRITICAL FLUID CHROMATOGRAPHY
Four basic types of column chromatography
High Performance Liquid Chromatography
High Performance Liquid Chromatography (H. P. L. C. ) dr. Sham b
Liquid Chromatography - Method Development and Validation
GAS CHROMATOGRAPHY.
Transferring LC-UV to LC-MS.
Presentation transcript:

© 2001 by KJS 5장 고성능 액체크로마토그래피(1)

LC vs. GC Two chromaographic phase for LC vs. one in GC - selectivity © 2001 by KJS LC vs. GC Two chromaographic phase for LC vs. one in GC - selectivity A great variety of column packing Lower separation temperature in LC

Liquid Chromatography 분리 원리 © 2001 by KJS Liquid Chromatography 분리 원리 분배 partition (LLC) 흡착 adsorption (LSC) 이온교환 ion exchange 크기 배제 size exclusion

© 2001 by KJS HPLC Flow Diagram

펌프의 종류 왕복식: 피스톤의 왕복운동 구슬제어밸브 용매흐름에 펄스 발생 치환형: 피스톤이 붙어 있는 원통 펄스의 발생이 없음 © 2001 by KJS 펌프의 종류 왕복식: 피스톤의 왕복운동 구슬제어밸브 용매흐름에 펄스 발생 치환형: 피스톤이 붙어 있는 원통 펄스의 발생이 없음 용매용량 제한 가압식: 용기속의 용매를 압축기체에 의해 이송 단가 저렴 기울기 용리 불가 저압에서만 사용

pump mechanism (a) (b) [그림5-3] 왕복피스톤 펌프(a, b)와 역류방지밸브 (c) (c) Cam © 2001 by KJS pump mechanism Plunger (a) Solvent in Solvent out Plunger seal Plunger (sapphire) Outlet check valve Inlet check valve (b) Cam [그림5-3] 왕복피스톤 펌프(a, b)와 역류방지밸브 (c) (c)

Pump output patterns (a)single-head reciprocating © 2001 by KJS Pump output patterns (c) dual-head sinusoidal cam (a)single-head reciprocating (b)dual-head circular cam

Pump 작동시 주의사항 사용 용매의 탈기 용매가 없는 상태에서 Pump on 하지 말 것 © 2001 by KJS Pump 작동시 주의사항 사용 용매의 탈기 용매가 없는 상태에서 Pump on 하지 말 것 Buffer 사용 후 물로 충분히 세척 다른 용매를 사용하는 경우 섞임성 확인 Pump priming 실시 Pulse 없는 상태로 계속적인 용매 흐름 조절 Pump 압력 확인 (높은지, 낮은지, 일정한지 확인) 용매 내에 용해되어 있는 가스성분(주로 산소)은 이동상 및 고정상과 반응을 일으킬 수도 있고 펌프에 무리가 갈수도 있기 때문에 사용 전에 탈기 과정을 실시하여야 한다. Buffer사용 후 세척하지 않으면 펌프에서 염이 석출되어 Pump head의 outlet부분이 막히게 되거나 수명을 단축시킨다. 세척 시 가장 좋은 방법은 낮은 유속으로 장시간 씻어주는 것이며, 일반적으로 세척양은 컬럼 dead volume의 20배 정도가 적당하다. 용매를 바꿀 경우 용매들간 섞이는 정도를 고려하여야 한다. BENE TECHNOLOGY . 2008 8

Low and high pressure gradient mixing © 2001 by KJS Low and high pressure gradient mixing A B

Six-port high-pressure injection valve © 2001 by KJS Six-port high-pressure injection valve

Injector 작동시 유의사항 잘 세척된 Syringe 사용 시료 주입시 기포는 완전히 제거 © 2001 by KJS Injector 작동시 유의사항 잘 세척된 Syringe 사용 시료 주입시 기포는 완전히 제거 Syringe 세척은 시료가 잘 녹는 용매를 사용 강한 세척 요구 시, 사용용매  Acetone  Dichloromethane 순으로 세척 Auto injector needle wash 용 용매 사용 시 주의 시료확산을 방지하기 위해 injector와 column, column과 detector사이 연결을 짧게 연결(0.009inch) 잘못된 Tubing 연결 시 dead volume 생김. - 주사기에 기포가 있을 경우 실험결과의 재현성을 얻기 힘들므로 기포는 완전히 제거하여야 한다. - Needle wash용 용매는 시료와 이동상의 화학적인 성질을 고려하여 선택하여야 하며 일반적인 선택방법은 다음과 같다. ----------------------------------------------------------------------------------- 이동상 Needle Wash Buffer aqueous, Reverse phase 50% H2O 50% MeOH Non aqueous, Reverse phase 100% MeOH Normal phase Mobile phase GPC Mobile phase Ion exchange H2O 11

Auto Injector Free injection하여 생산성을 향상 조건입력 가능 무인 가동할 수 있으므로 분석 시간 단축 © 2001 by KJS Auto Injector Free injection하여 생산성을 향상 조건입력 가능 무인 가동할 수 있으므로 분석 시간 단축 온도 조절을 통해 시료의 변성 가능성을 최소화 시료의 주입량의 오차가 거의 없으므로 재현성 우수 Auto priming 및 Auto needle washing이 가능함 Heater나 Cooler를 장착하여 시료가 들어있는 Vial 부분을 4~40C 범위로 조절이 가능하다. Needle wash pump의 auto-priming이 가능 Auto-needle washing 기능은 시료의 연속 주입시 발생할 수 있는 주사기의 오염을 방지한다. Auto Standards 기능 : 먼저 standards를 주입 >> 시료들을 주입 >> 다시 같은 standards를 주입 Auto Addition 기능 : common vial과 sample vial에 들어 있는 용액의 일정량을 각각 취하여 혼합한 뒤, 그 총량을 컬럼에 주입하는 기능이다. 이 기능은 유도체시약이나 표준물 등의 자동적인 첨가등에 유용하게 사용될 수 있다. 12

The most important parameters for analysis © 2001 by KJS The most important parameters for analysis LOD : limit of detection (S/N = 2-3) LOQ : limit of quantification (S/N = 10-20) Linearity : calibration Selectivity Qualitative information

Types of detectors UV, diode array detector refractive index detector © 2001 by KJS Types of detectors UV, diode array detector refractive index detector fluorometric detector electrochemical detector evaporative light-scattering detector radioactivity (radioisotope) detector ORD/CD LC-MSD

[표5-1] HPLC 검출기의 분류 Selective Detector Specific © 2001 by KJS [표5-1] HPLC 검출기의 분류 Selective Detector Specific Less influenced by changing solvent Sensitive UV Fluorescence ECD Mass Universal Detector Universal Wider range of application RI ELSD

© 2001 by KJS Z-type cell Tapered cell [그림5-12] UV/Vis detector

© 2001 by KJS Tapered Cell을 사용하는 고감도 검출기 일반 검출기 셀의 경우 셀 내에 들어온 빛은 굴절을 일으켜 들어온 빛이 모두 검출기로 들어가지 못해 셀 내에 시료가 없더라도 마치 빛을 흡수하는 물질이 있는 것처럼 보이지만 Tapered Cell은 셀 내에 들어온 빛이 모두 검출기로 들어가므로 고감도의 분석을 가능하게 합니다. Tapered Cell 검출기 셀의 구조

Characteristics of UV detector © 2001 by KJS Characteristics of UV detector

© 2001 by KJS

© 2001 by KJS Excitation Spectrum Emission Spectrum

Selectivity of fluorometric detector © 2001 by KJS Selectivity of fluorometric detector

© 2001 by KJS [그림5-16] 2종류 검출기의 동시 사용

Evaporative Light-Scattering Detection (ELSD) © 2001 by KJS Evaporative Light-Scattering Detection (ELSD)

Volatile Mobile Phase Modifiers © 2001 by KJS Volatile Mobile Phase Modifiers pKa pKb pH Range BP MP Acids Trifluoroacetic Acid 0.3 13.7 72.4°C Formic Acid 3.75 10.25 100.7°C Acetic Acid 4.75 9.25 116.0°C Carbonic Acid 6.37 7.63 — Bases Ammonia 33.35°C Methylamine 10.81 3.19 16.6°C Ethylamine 10.66 3.34 -6.3°C Triethylamine 11.01 2.99 89.3°C Buffers Ammonium Formate 3.0-5.0 120°C Pyridinium Formate Ammonium Acetate 3.8-5.8 111°C Pyridinium Acetate 4.0-6.0 Ammonium Carbonate (for reverse phase) 8.0 (adjusted) Ammonium Carbonate 5.5-7.5 and 9.3-11.3

Measurements of mass concentration © 2001 by KJS Measurements of mass concentration

Characteristics of RI detectors © 2001 by KJS Characteristics of RI detectors

© 2001 by KJS

© 2001 by KJS

[그림5-20] ELSD와 RI의 비교 © 2001 by KJS RI ELSD Carbohydrates 1. Fructose 2. Glucose 3. Sucrose Column: Prevail™ Carbohydrate ES, 5µm, 53 x 7mm Mobile Phase: Acetonitrile:Water (75:25) Flowrate: 2.0mL/min [그림5-20] ELSD와 RI의 비교

Electrochemical reactions © 2001 by KJS Electrochemical reactions

Electrochemically active functional groups © 2001 by KJS Electrochemically active functional groups

Design of electrochemical flow cell © 2001 by KJS Design of electrochemical flow cell

© 2001 by KJS 223 182 185 Time (ms) -1.0 -0.4 +0.8 E1 E2 E3 S E(V) Pulsed amperometric detection of carbohydrate with Pt-electrode E3 : Reducing potential Surface PtO is reduced to Pt. Regeneration of electrode-surface E1: Measuring potential Oxidation of carbohydrate on the surface of the electrode E2 : Oxidation potential Surface oxidation to PtO and desorbs oxidation product of carbohydrate [그림5-24]

Compound types sensed by the ECD © 2001 by KJS Compound types sensed by the ECD

© 2001 by KJS

© 2001 by KJS

© 2001 by KJS

Magnetic sector mass filter © 2001 by KJS Magnetic sector mass filter

© 2001 by KJS

© 2001 by KJS Ion Trap mass filter

Time of Flight (TOF) mass filter © 2001 by KJS Time of Flight (TOF) mass filter

© 2001 by KJS API (atmospheric pressure ionization) LC/MS interface 1. Electrospray ionization (ESI) 2. Atmospheric pressure chemical ionization (APCI) Collision Induced Decomposition

API-Electrospray ion source © 2001 by KJS API-Electrospray ion source

© 2001 by KJS

© 2001 by KJS APCI interface

ESI vs. APCI evaporation and explosion suitable for polar samples © 2001 by KJS evaporation and explosion suitable for polar samples flow rate - 0.2 (1) ml/min wide range of molecular weight drug and metabolites peptides proteins natural products ion molecular reaction suitable for less polar samples flow rate - 1 (2) ml/min stable operation pesticides steroids drugs

Radioactivity detectors © 2001 by KJS Radioactivity detectors Monitoring radio-labeled solutes homogeneous system: column eluent is mixed with a liquid scintillation cocktail before passing through a flow cell. heterogeneous system: the eluent moves directly to the flow cell, packed with solid scintillant.

CD 검출기 vs. ORD 검출기 Flavone (0.1ug)의 크로마토그램 CD검출기: D-L 체가 검출 © 2001 by KJS CD 검출기 vs. ORD 검출기 Flavone (0.1ug)의 크로마토그램 CD검출기: D-L 체가 검출 OR검출기: 감도가 낮아 검출 불가 CD 검출기가 OR 검출기에 비해 월등한 S/N를 보이므로 UV를 흡수하는 물질인 경우엔 CD검출기를 사용하는 것이 좋다. 하지만 UV를 흡수하지 않는 물질인 경우엔 ORD 검출기를 사용해야 한다. Column : CHIRALCEL OD 94.6mmIDx250mmL Eluent : n-Hexane/PA(90/10) Flow rate : 1.0ml/min Temperature : 20C Injection Volume : 10l