Eng. R. L. NKUMBWA Copperebelt University School of Technology 2010.

Slides:



Advertisements
Similar presentations
Landstown High School Governors STEM & Technology Academy
Advertisements

Chapter 6: Fluids Engineering
Continuity Equation. Continuity Equation Continuity Equation Net outflow in x direction.
Basic Hydraulics and Pneumatics
Lect.2 Modeling in The Frequency Domain Basil Hamed
Lecture 2 Free Vibration of Single Degree of Freedom Systems
1 Mechanical Systems Translation  Point mass concept  P  P(t) = F(t)*v(t)  Newton’s Laws & Free-body diagrams Rotation  Rigid body concept  P  P(t)
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Sections 818, 819, 820, 821 Lecture 10.
POWER TRANSMISSION Overview of the systems used to transfer power from actuators to the outputs.
Fluid mechanics 3.1 – key points
Feedback Control Systems (FCS) Dr. Imtiaz Hussain URL :
Control System Instrumentation
Introduction to Structural Dynamics:
Scale physical model Mathematical model Numerical model How to Model Physical Systems
Lect.2 Modeling in The Frequency Domain Basil Hamed
Automatic Control System
In Engineering --- Designing a Pneumatic Pump Introduction System characterization Model development –Models 1, 2, 3, 4, 5 & 6 Model analysis –Time domain.
SISO System Input Output SIMO System InputOutputs MISO System Input Output MIMO System InputOutput (a)(b) (c)(d) A general way of classifying the systems.
Lec 3. System Modeling Transfer Function Model
System Models Mathematical Models Mechanical System Building Blocks Electrical System Building Blocks Fluid System Building Blocks Thermal Systems Building.
Chapter 6 Energy and Energy Transfer. Introduction to Energy The concept of energy is one of the most important topics in science Every physical process.
PTT 204/3 APPLIED FLUID MECHANICS SEM 2 (2012/2013)
Feedback Control Systems (FCS) Dr. Imtiaz Hussain URL :
Analogous Physical Systems BIOE Creating Mathematical Models Break down system into individual components or processes Need to model process outputs.
Recap of Session VII Chapter II: Mathematical Modeling Mathematical Modeling of Mechanical systems Mathematical Modeling of Electrical systems Models of.
Lecture 2.0: Introduction to Process Control Systems and Modeling Eng R. L. Nkumbwa Copperbelt University /16/ Eng R. L. Nkumbwa 2010.
MESB374 System Modeling and Analysis Hydraulic (Fluid) Systems
Block Diagram Manipulation
1 Chapter 6 Energy and Energy Transfer 2 3 Introduction to Energy The concept of energy is one of the most important topics in science Every physical.
System Models.
Lecture 3: Dynamic Models
Dr. Tamer Samy Gaafar Lec. 3 Mathematical Modeling of Dynamic System.
Automatic Control Theory CSE 322
1 Chapter 6 Energy and Energy Transfer 2 3 Introduction to Energy The concept of energy is one of the most important topics in science Every physical.
The Laplace Transform.
Biomedical Control Systems (BCS) Module Leader: Dr Muhammad Arif muhammadarif Batch: 10 BM Year: 3 rd Term: 2 nd Credit Hours (Theory):
Engineering Concepts Chapter 5 Terms. ACTUATOR A device that transfers fluid or electrical energy into mechanical energy.
Hydraulic System.
1 10. Harmonic oscillator Simple harmonic motion Harmonic oscillator is an example of periodic motion, where the displacement of a particle from.
ETEC 4501 Chapter 4 Laplace Transforms and Transfer Functions.
Dr.Mohammed abdulrazzaq
Chapter 3.
Automatic Control Theory CSE 322
CHAPTER 6 MESB System Modeling and Analysis Hydraulic (Fluid) Systems
CONTROL SYSTEMS ENGINEERING MODELING
Automatic Control Theory CSE 322
Feedback Control Systems (FCS)
Control System Instrumentation
Introduction to hydraulics
Figure 1. Spring characteristics
ABE 223 ABE Principles – Machine systems Bernoulli’s Law Tony Grift
Figure 1. Spring characteristics
Mathematical Modelling of Mechanical and Electrical Systems
Mathematical Models of Systems Objectives
Mathematical Models of Physical Systems
Kinematic Analysis (position, velocity and acceleration)
Mathematical Modeling of Control Systems
GUJARAT TECHNOLOGICAL UNIVERSITY BIRLA VISHVAKARMA MAHAVIDYALAYA
Introduction to Fluid Mechanics
Control System Instrumentation
CONTROL SYSTEMS ENGINEERING MODELING
Control System Instrumentation
BDU20102 Electromechanical & Control System
LECTURE #5 System Modeling& Responses
Figure 1. Spring characteristics
Control Systems Lecture 5: Mathematical Modeling of Mechanical Systems and State Space Representation Abdul Qadir Ansari, PhD
Control Systems (CS) Lecture-4-5
APPLICATION OF LINEAR ALGEBRA IN MECHANICAL ENGINEERING
. Modeling OBJECTIVE Revision on Laplace transform
Chapter 3 Modeling in the Time Domain
Presentation transcript:

Eng. R. L. NKUMBWA Copperebelt University School of Technology 2010

1.0 INTRODUCTION 2.0 TRANSLATIONAL SYSTEMS 2.3 Electrical Systems 3.0 ROTATIONAL SYSTEMS 4.0 HYDRAULIC SYSTEMS 5.0 PNEUMATIC SYSTEMS 6.0 CONCLUSION 7.0 REFERENCES

 In analyzing and designing of control systems, we need to formulate a mathematical description of the system which is commonly referred to as Modeling.  Modeling is the process of obtaining the desired mathematical description of the control system.  The basic models of the dynamic physical systems are represented by differential equations.  Analysis of a dynamic system requires the ability to predict its control system performance.

 A model in control system is defined as representation of essential aspects of a system illustrating how it operates.  These may include inputs, the system, outputs and feedback.  The components of a control system are diverse in nature and may include mechanical and electrical devices.

 The basic models of the dynamic physical systems are differential equations obtained by the application of the appropriate laws of nature.  These equations may be linear or nonlinear depending on the phenomena being modeled.  The differential equations are inconvenient for the analysis and design manipulations and so the use of Laplace Transforms which converts the differential equations into algebraic equations is recommended.  The algebraic equations may be put in transfer function form, and the system modeled graphically as transfer function block diagram.

 This Chapter is mostly concerned with differential equations, transfer functions of different physical system such as; Electrical, Hydraulic, Pneumatic, Translational and Rotational systems.  This ability and the precision of the results depend on how well the characteristics of each component can be expressed mathematically.

 The Mechanical Translational Systems basic law is that the sum of forces must be equal to zero.  It applies Newton’s law which states that the sum of the applied forces must be equal to the sum of the reactive forces.  The basic characterizing elements in a Mechanical Translational System are; The Mass (M), Damper (B) and the Spring (K).  The Mass is an inertial element; a force applied to the mass which produces acceleration.

 The reaction force F m equals the product of mass and acceleration and is opposite in the direction to the applied force.  F m = -Ma  In terms of displacement x, velocity v, and acceleration a, the force equation is given by;  F(t) =Ma = M.d 2 x/dt 2  The damping force is proportional to the difference in velocity of two bodies.  The reaction damping force f B equals the product of damping B and the relative of the two end of the dashpot.  The damping force f B is give by: F(t) = B (v 1 -v 2 ) = Bv

 In terms of displacement it is given by:  F(t) = B (x 1 -x 2 )  The spring element, the force equation in accordance with Hooke’s Law is given by:  F k = K (x e -x f )  Where x e and x f are the end displacements at e and f respectively.  If the end is stationary, the equation is given by: F k = Kx e

Reference X x f(t) K B Figure 1: Mechanical System

 Rotational Systems are similar to Translational Systems except for the difference that the torque equations are written in place of force equations and that the displacement, velocity and acceleration terms are angular quantities.  Meaning that the applied torque is equal to the sum of the reaction torques.  Elements of the Rotational System are; 1.Inertia element T j = Jdω/dt =J.d 2 /dt 2 = J.D 2 2.Torsional spring element T k = K ( ) = K 3.Damper element T B = B (ω 1 – ω 2 ) = Bω

Disc Shaft Stiffness T θ Figure 2: Rotational Mechanical system (B) Viscous friction coefficient

T(t) θ B K Reference node Figure 3: Electrical Equivalent of Mechanical System

J d 2 θ/dt 2 + B dθ/dt + Kθ = T (t)  In terms of D operator, JD 2 θ + BDθ + Kθ = T(t)  In Laplace transform the equation will be J s 2 θ(s) + Bsθ(s) + Kθ(s) = T(s) [J s 2 + BS + K] θ(s) = T(s) θ(s)/T(s) = 1/Js 2 + Bs + K  This equation is a transfer function of the Rotational Mechanical System.

 Hydraulics is the study of incompressible fluids such as oil and water.  Incompressible fluids means that the fluid’s density remains constant despite changes in fluid pressure.  The variables for fluid systems are pressure, mass and mass flow rate.

P Q R A h Figure 4: Fluid Flow System

 Where,  A is the surface area of the tanks bottom.  P is fluid in, Q the fluid out, R is the fluid resistance, and m is mass.  If the tank’s side is vertical, the liquid height h is related by; m = ρ Ah

 In hydraulic actuators as the brake on an automobile.  The control flaps of airplanes are actuated by similar hydraulic systems.  Hydraulic jacks and lifts are used for raising vehicles in service stations and for lifting heavy loads in the construction and mining industry.

 For incompressible fluids, conservation of mass is equivalent to conservation of volume, because the fluid density is constant.  If q m and q are the mass and the volume flow rates and ρ is the fluid density, the equation is give as:  q m = ρ q

 The conservation of the mass of a container holding mass of fluid m, is given by the following equation; m = q in – q out  Where q in is the inflow rate, q out is the outflow rate and fluid mass is related to the container volume V by m = ρ V  For incompressible fluid ρ is a constant and m = ρV.  If q 1 and q 2 are the total volume inflow and outflow rates, q in = ρ q 1 and q out = ρ q 2.  Substituting this relationships into equation; it gives the following ρ V = ρ q 1 - ρ q 2 V = q 1 – q 2

 The working medium in a pneumatic systems or device is a compressible fluid.  Industrial Control Systems most frequently use pneumatic to provide forces greater than those available from electrical devices.  The response of pneumatic systems is slower than that of hydraulic systems because of the compressibility of the working fluid.

 The following are the quantities of Pneumatic Systems; Mass, Volume, Pressure and Temperature.  This relationship is called the “Perfect Gas Law” which states that, pV = mRgT  Where p is the absolute pressure of the gas with volume V, m is the mass, T its absolute temperature, and Rg the gas constant that depends on the particular type of gas.  The compressible “flow resistance” of pneumatic components is modeled in the form of the turbulent resistance written here as, R p q 2 m = ∆ p  Where ∆ p is the pressure drop across the component and R p is the “pneumatic resistance”.

valve container Qq p, P Figure 5: Pneumatic System

 In this chapter we have defined what Translational, Rotational, Fluid and Pneumatic systems are.  There are differences that have been outlined according to mathematical modeling and natural laws  Translation uses force equations while Rotational uses torque equations.  Hydraulic system is the study of incompressible liquids while Pneumatic uses compressible liquids  These equations maybe linear or nonlinear depending on the systems being modeled. 

 Chesmond, C.J, (1990), Basic Control System Technology, J W Arrow Smith Ltd, Bristol, United Kingdom.  Nkumbwa, R.L, (2009), Control Systems engineering for 21 st Century Engineers and Technologists, Lusaka, Zambia.  Parr, E.A, (1996), Control Engineering, Hartnolls Ltd, London, England.  Chand, S (1999), Principles of` Control Systems