ITCS 6265 Information Retrieval & Web Mining Lecture 15 Clustering.

Slides:



Advertisements
Similar presentations
Lecture 15(Ch16): Clustering
Advertisements

Information Retrieval Lecture 7 Introduction to Information Retrieval (Manning et al. 2007) Chapter 17 For the MSc Computer Science Programme Dell Zhang.
Albert Gatt Corpora and Statistical Methods Lecture 13.
PARTITIONAL CLUSTERING
©2012 Paula Matuszek CSC 9010: Text Mining Applications: Document Clustering l Dr. Paula Matuszek l
Clustering Paolo Ferragina Dipartimento di Informatica Università di Pisa This is a mix of slides taken from several presentations, plus my touch !
Unsupervised learning
Clustering II.
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 16: Flat Clustering 1.
CS347 Lecture 8 May 7, 2001 ©Prabhakar Raghavan. Today’s topic Clustering documents.
Clustering… in General In vector space, clusters are vectors found within  of a cluster vector, with different techniques for determining the cluster.
CS728 Web Clustering II Lecture 14. K-Means Assumes documents are real-valued vectors. Clusters based on centroids (aka the center of gravity or mean)
1 Text Clustering. 2 Clustering Partition unlabeled examples into disjoint subsets of clusters, such that: –Examples within a cluster are very similar.
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 16: Flat Clustering 1.
Lecture 13: Clustering (continued) May 12, 2010
CS276A Text Retrieval and Mining Lecture 13 [Borrows slides from Ray Mooney and Soumen Chakrabarti]
Introduction to Information Retrieval Introduction to Information Retrieval Lecture 17: Hierarchical Clustering 1.
Flat Clustering Adapted from Slides by
Unsupervised Learning: Clustering 1 Lecture 16: Clustering Web Search and Mining.
Clustering Unsupervised learning Generating “classes”
Unsupervised Learning. CS583, Bing Liu, UIC 2 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate.
PrasadL16FlatCluster1 Flat Clustering Adapted from Slides by Prabhakar Raghavan, Christopher Manning, Ray Mooney and Soumen Chakrabarti.
START OF DAY 8 Reading: Chap. 14. Midterm Go over questions General issues only Specific issues: visit with me Regrading may make your grade go up OR.
Text Clustering.
Clustering Supervised vs. Unsupervised Learning Examples of clustering in Web IR Characteristics of clustering Clustering algorithms Cluster Labeling 1.
tch?v=Y6ljFaKRTrI Fireflies.
Introduction to Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan.
Basic Machine Learning: Clustering CS 315 – Web Search and Data Mining 1.
1 Motivation Web query is usually two or three words long. –Prone to ambiguity –Example “keyboard” –Input device of computer –Musical instruments How can.
Introduction to Information Retrieval Introduction to Information Retrieval Modified from Stanford CS276 slides Chap. 16: Clustering.
Clustering Paolo Ferragina Dipartimento di Informatica Università di Pisa This is a mix of slides taken from several presentations, plus my touch !
UNSUPERVISED LEARNING David Kauchak CS 451 – Fall 2013.
Information Retrieval Lecture 6 Introduction to Information Retrieval (Manning et al. 2007) Chapter 16 For the MSc Computer Science Programme Dell Zhang.
Hinrich Schütze and Christina Lioma Lecture 16: Flat Clustering
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 16: Flat Clustering 1.
Clustering Algorithms for Numerical Data Sets. Contents 1.Data Clustering Introduction 2.Hierarchical Clustering Algorithms 3.Partitional Data Clustering.
Information Retrieval and Organisation Chapter 16 Flat Clustering Dell Zhang Birkbeck, University of London.
CS 8751 ML & KDDData Clustering1 Clustering Unsupervised learning Generating “classes” Distance/similarity measures Agglomerative methods Divisive methods.
Clustering. What is Clustering? Clustering: the process of grouping a set of objects into classes of similar objects –Documents within a cluster should.
V. Clustering 인공지능 연구실 이승희 Text: Text mining Page:82-93.
CSCI 5417 Information Retrieval Systems Jim Martin Lecture 15 10/13/2011.
Clustering (Modified from Stanford CS276 Slides - Lecture 17 Clustering)
Today’s Topic: Clustering  Document clustering Motivations Document representations Success criteria  Clustering algorithms Partitional Hierarchical.
Compiled By: Raj Gaurang Tiwari Assistant Professor SRMGPC, Lucknow Unsupervised Learning.
Lecture 12: Clustering May 5, Clustering (Ch 16 and 17)  Document clustering  Motivations  Document representations  Success criteria  Clustering.
Information Retrieval and Organisation Chapter 17 Hierarchical Clustering Dell Zhang Birkbeck, University of London.
Basic Machine Learning: Clustering CS 315 – Web Search and Data Mining 1.
Clustering Slides adapted from Chris Manning, Prabhakar Raghavan, and Hinrich Schütze (
1 CS 391L: Machine Learning Clustering Raymond J. Mooney University of Texas at Austin.
1 Machine Learning Lecture 9: Clustering Moshe Koppel Slides adapted from Raymond J. Mooney.
Information Retrieval Search Engine Technology (8) Prof. Dragomir R. Radev.
Hierarchical clustering approaches for high-throughput data Colin Dewey BMI/CS 576 Fall 2015.
Introduction to Information Retrieval Introduction to Information Retrieval Clustering Chris Manning, Pandu Nayak, and Prabhakar Raghavan.
Introduction to Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Christopher Manning and Prabhakar.
Introduction to Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Christopher Manning and Prabhakar.
Data Mining and Text Mining. The Standard Data Mining process.
Hierarchical Clustering & Topic Models
Unsupervised Learning: Clustering
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval"
Sampath Jayarathna Cal Poly Pomona
Unsupervised Learning: Clustering
IAT 355 Clustering ______________________________________________________________________________________.
Machine Learning Lecture 9: Clustering
本投影片修改自Introduction to Information Retrieval一書之投影片 Ch 16 & 17
CS 391L: Machine Learning Clustering
Machine Learning on Data Lecture 9b- Clustering
Text Categorization Berlin Chen 2003 Reference:
Clustering Techniques
INFORMATION RETRIEVAL TECHNIQUES BY DR. ADNAN ABID
Presentation transcript:

ITCS 6265 Information Retrieval & Web Mining Lecture 15 Clustering

This lecture: Clustering Document clustering Motivations Document representations Success criteria Clustering algorithms Partitional Hierarchical

What is clustering? Clustering: the process of grouping a set of objects into classes of similar objects Documents within a cluster should be similar. Documents from different clusters should be dissimilar. The commonest form of unsupervised learning Unsupervised learning = learning from raw data, as opposed to supervised data where a classification of examples is given A common and important task that finds many applications in IR and other places

A data set with clear cluster structure How would you design an algorithm for finding the three clusters in this case?

Yahoo! Hierarchy isn’t clustering but is the kind of output you want from clustering dairy crops agronomy forestry AI HCI craft missions botany evolution cell magnetism relativity courses agriculturebiologyphysicsCSspace... … (30)

Google News: automatic clustering gives an effective news presentation metaphor

Scatter/Gather: Cutting, Karger, and Pedersen

For visualizing a document collection and its themes Wise et al, “Visualizing the non-visual” PNNL ThemeScapes, Cartia [Mountain height = cluster size]

For improving search recall Cluster hypothesis - Documents in the same cluster behave similarly with respect to relevance to information needs Therefore, to improve search recall: Cluster docs in corpus a priori When a query matches a doc D, also return other docs in the cluster containing D Hope if we do this: The query “car” will also return docs containing automobile Because clustering grouped together docs containing car with those containing automobile. Why might this happen?

For better navigation of search results

Issues in clustering Representation for clustering Document representation Vector space? Normalization? Centroids aren’t length normalized Need a notion of similarity/distance How many clusters? Fixed a priori? Completely data driven? Avoid “trivial” clusters - too large or small In an application, if a cluster's too large, then for navigation purposes you've wasted an extra user click without whittling down the set of documents much.

What makes docs “related”? Ideal: semantic similarity. Practical: statistical similarity We will use cosine similarity. Docs as vectors. For many algorithms, easier to think in terms of a distance (rather than similarity) between docs. We will use Euclidean distance.

Clustering Algorithms Flat algorithms Usually start with a random (partial) partitioning Refine it iteratively K means clustering (Model based clustering) Hierarchical algorithms Bottom-up, agglomerative (Top-down, divisive)

Hard vs. soft clustering Hard clustering: Each document belongs to exactly one cluster More common and easier to do Soft clustering: A document can belong to more than one cluster. Makes more sense for applications like creating browsable hierarchies You may want to put a pair of sneakers in two clusters: (i) sports apparel and (ii) shoes You can only do that with a soft clustering approach. We won’t do soft clustering today. See IIR 16.5, 18

Partitioning Algorithms Partitioning method: Construct a partition of n documents into a set of K clusters Given: a set of documents and the number K Find: a partition of K clusters that optimizes the chosen partitioning criterion Globally optimal: exhaustively enumerate all partitions Effective heuristic methods: K-means and K-medoids algorithms

K-Means Assumes documents are real-valued vectors. Clusters based on centroids (aka the center of gravity or mean) of points in a cluster, c: Reassignment of instances to clusters is based on distance to the current cluster centroids. (Or one can equivalently phrase it in terms of similarities)

K-Means Algorithm Select K random docs {s 1, s 2,… s K } as seeds. Until clustering converges or other stopping criterion: For each doc d i : Assign d i to the cluster c j such that dist(x i, s j ) is minimal. (Update the seeds to the centroid of each cluster) For each cluster c j s j =  (c j )

K Means Example (K=2) Pick seeds Reassign clusters Compute centroids x x Reassign clusters x x x x Compute centroids Reassign clusters Converged!

Termination conditions Several possibilities, e.g., A fixed number of iterations. Doc partition unchanged. Centroid positions don’t change. Does this mean that the docs in a cluster are unchanged?

Convergence Why should the K-means algorithm ever reach a fixed point? A state in which clusters don’t change. K-means is a special case of a general procedure known as the Expectation Maximization (EM) algorithm. EM is known to converge. Number of iterations could be large. But in practice usually isn’t

Convergence of K-Means Define goodness measure of cluster k as sum of squared distances from cluster centroid: G k = Σ i |d i – c k | 2 (sum over all d i in cluster k) G k also called residual sum of squares (RSS) G = Σ k G k Reassignment monotonically decreases G since each vector is assigned to the closest centroid. Lower case

Convergence of K-Means Recomputation monotonically decreases each G k since (m k is number of members in cluster k): Σ (d i – a) 2 reaches minimum for: Σ –2(d i – a) = 0 Σ d i = Σ a m K a = Σ d i a = (1/ m k ) Σ d i = c k K-means typically converges quickly

Time Complexity Computing distance between two docs is O(m) where m is the dimensionality of the vectors. Reassigning clusters: O(Kn) distance computations, or O(Knm). Computing centroids: Each doc gets added once to some centroid: O(nm). Assume these two steps are each done once for I iterations: O(IKnm).

Seed Choice Results can vary based on random seed selection. Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings. Try out multiple starting points Initialize with the results of another method such as hierarchical clustering B and E as initial centroids Example showing sensitivity to seeds  {A,B,C} and {D,E,F}  {A,B,D,E} {C,F} D and F as initial centroids

How Many Clusters? Number of clusters K is given Partition n docs into predetermined number of clusters Finding the “right” number of clusters is part of the problem Given docs, partition into an “appropriate” number of subsets. E.g., for query results - ideal value of K not known up front - though UI may impose limits.

K not specified in advance Say, the results of a query. Solve an optimization problem: penalize having lots of clusters tradeoff between having more clusters (better focus within each cluster) and having too many clusters

K not specified in advance Given a clustering, define the Benefit for a doc to be the cosine similarity to its centroid Define the Total Benefit to be the sum of the individual doc Benefits. Why is there always a clustering of Total Benefit n?

Penalize lots of clusters For each cluster, we have a Cost C. Thus for a clustering with K clusters, the Total Cost is KC. Define the Value of a clustering to be = Total Benefit - Total Cost. Find the clustering of highest value, over all choices of K. Total benefit increases with increasing K. But can stop when it doesn’t increase by “much”. The Cost term enforces this.

Hierarchical Clustering Build a tree-based hierarchical taxonomy from a set of documents. One approach: recursive application of a partitional clustering algorithm. animal vertebrate fish reptile amphibian mammal worm insect crustacean invertebrate

Hierarchical Agglomerative Clustering (HAC) Starts with each doc in a separate cluster then repeatedly joins the closest pair of clusters (I.e., two clusters with the highest similarity score), until there is only one cluster. The history of merging forms a binary tree or hierarchy

Merges = horizontal lines Y-coordinates of lines = similarities of merged clusters connectedClustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster. Dendogram: Visualizing HAC using tree-like diagram

Similarity of two clusters = ? Single-link: the similarity of the most similar documents from different clusters Complete-link the similarity of the least similar documents from different clusters Centroid the similarity of their centroids = the average similarity of documents from different clusters Average-link (group-average) the average similarity of all documents, including those from the same cluster

Single Link Agglomerative Clustering Use maximum similarity of pairs: Can result in “straggly” (long and thin) clusters due to chaining effect. After merging c i and c j, the similarity of the resulting cluster to another cluster, c k, is:

Single Link Example

Complete Link Agglomerative Clustering Use minimum similarity of pairs: Makes “tighter,” spherical clusters that are typically preferable. After merging c i and c j, the similarity of the resulting cluster to another cluster, c k, is: CiCi CjCj CkCk

Complete Link Example

Computational Complexity In the first iteration, all HAC methods need to compute similarity of all pairs of n individual instances which is O(n 2 ). In each of the subsequent n  2 merging iterations, compute the distance between the most recently created cluster and all other existing clusters. In order to maintain an overall O(n 2 ) performance, computing similarity to each other cluster must be done in constant time. Often O(n 3 ) if done naively or O(n 2 log n) if done more cleverly

Group Average Agglomerative Clustering (GAAC) Similarity of two clusters = average similarity of all pairs within merged cluster. Compromise between single and complete link. Consider sim = dot product

GAAC Recall: So:Equivalently:

GAAC

Computing Group Average Similarity Always maintain sum of vectors in each cluster. Compute similarity of clusters in constant time:

What Is A Good Clustering? Internal criterion: A good clustering will produce high quality clusters in which: the intra-class (that is, intra-cluster) similarity is high the inter-class similarity is low The measured quality of a clustering depends on both the document representation and the similarity measure used E.g., Silhousette coefficientSilhousette

External criteria for clustering quality Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data Assesses a clustering with respect to ground truth … requires labeled data Assume documents with C gold standard classes, while our clustering algorithms produce K clusters, ω 1, ω 2, …, ω K with n i members in ω i.

External Evaluation of Cluster Quality Simple measure: purity (of a cluster), the ratio of the number of documents in the majority class in cluster ω i to the size of the cluster A biased measure: because having n clusters maximizes purity (where n = # of docs) Others are entropy of classes in clusters (or mutual information between classes and clusters)

     Cluster ICluster IICluster III Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6 Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6 Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5 Purity example

Rand Index measures between pair decisions. Here RI = 0.68 Number of points Same Cluster in clustering Different Clusters in clustering Same class in ground truth Different classes in ground truth TN FN FP TP

Rand index and Cluster F-measure Compare with standard Precision and Recall: Use F ,  > 1 (e.g., F 5 ) to emphasize recall, i.e., penalizing FNs more strongly than FPs Same Cluster Diff. Clusters Same class 2024 Different classes 2072 E.g., RI=(20+72)/136=.68 TPFN FPTN

Final word and resources In clustering, clusters are inferred from the data without human input (unsupervised learning) However, in practice, it’s a bit less clear: there are many ways of influencing the outcome of clustering: number of clusters, similarity measure, representation of documents,... Resources IIR 16 except 16.5 IIR 17.1–17.3