Project II Team 9 Philippe Delelis Florian Brouet 이성혁
DATA 1DATA 2DATA 3 µ1= µ2= µ3= σ = σ = σ = Stress Strentgh Because DATA 2 > DATA 1 > DATA 3
Data 1&2 : Project 1 Results Data set 1 (N = 21) Normal Distribution µ = σ = Data set 2 (N = 26) Weibull Distribution m = ξ = Weibull Normal
Data 1&2 : Project 2 Analysis Use of the equation Strength : Weibull Distribution Stress : Normal Distribution
x=[0:1:1000]; Fsig=0.5*(1+erf((x )/( *sqrt(2)))); Fs=1-exp(-(x/340.52).^1.9055); fsig=diff(Fsig); fs=diff(Fs); plot([fs, fsig],'r‘) Data 1&2 : Using Matlab Stress Strength R=
Data 1&2 :
Data 1&2 : Original Graph Pf = R =
Data 1&2 : Triangle Method Pf = R =
Data 1&2 : Upper Limit Pf = R =
Data 1&2 : Lower Limit Pf = R =
Conclusion Data 1&2 Matlab values Reliability Calculation Method TriangleUpperLower Probability of Failure (Pf) 49.09%44.86%45.48%44.24% Reliability (R)50.91%55.14%54.52%55.76% R =
Data 2&3 : Project 1 Results Data set 2 (N = 26) Weibull Distribution m = ξ = Data set 3 (N = 29) Normal Distribution µ = σ = Weibull Normal
x=[0:1:1000]; Fsig=0.5*(1+erf((x )/(180.17*sqrt(2)))); Fs=1-exp(-(x/340.52).^1.9055); fsig=diff(Fsig); fs=diff(Fs); plot([fs, fsig],'r‘) Data 2&3 : Using Matlab Stress Strength R=
Data 2&3 :
Data 2&3 : Original Graph… Pf = R =
Data 2&3 : Triangle Method Pf = R =
Data 2&3 : Upper Limit Pf = R =
Data 2&3 : Lower Limit Pf = R =
Conclusion Data 2&3 Matlab values Reliability Calculation Method TriangleUpperLower Probability of Failure (Pf) 45.03%42.98%46.11%45.61% Reliability (R)54.97%57.02%53.89%54.39% R =