Section 5.2: Definite Integrals

Slides:



Advertisements
Similar presentations
Riemann sums, the definite integral, integral as area
Advertisements

5/16/2015 Perkins AP Calculus AB Day 5 Section 4.2.
Chapter 5 Integrals 5.2 The Definite Integral In this handout: Riemann sum Definition of a definite integral Properties of the definite integral.
5.2 Definite Integrals Quick Review Quick Review Solutions.
Riemann Sums and the Definite Integral Lesson 5.3.
Definition: the definite integral of f from a to b is provided that this limit exists. If it does exist, we say that is f integrable on [a,b] Sec 5.2:
The Definite Integral.
Definite Integrals Sec When we find the area under a curve by adding rectangles, the answer is called a Rieman sum. subinterval partition The width.
Georg Friedrich Bernhard Riemann
Aim: Riemann Sums & Definite Integrals Course: Calculus Do Now: Aim: What are Riemann Sums? Approximate the area under the curve y = 4 – x 2 for [-1, 1]
Area/Sigma Notation Objective: To define area for plane regions with curvilinear boundaries. To use Sigma Notation to find areas.
Section 7.2a Area between curves.
Introduction to integrals Integral, like limit and derivative, is another important concept in calculus Integral is the inverse of differentiation in some.
Lets take a trip back in time…to geometry. Can you find the area of the following? If so, why?
5.2 Definite Integrals. Subintervals are often denoted by  x because they represent the change in x …but you all know this at least from chemistry class,
Section 4.3 – Riemann Sums and Definite Integrals
5.2 Definite Integrals.
If the partition is denoted by P, then the length of the longest subinterval is called the norm of P and is denoted by. As gets smaller, the approximation.
1 §12.4 The Definite Integral The student will learn about the area under a curve defining the definite integral.
CHAPTER 4 SECTION 4.3 RIEMANN SUMS AND DEFINITE INTEGRALS.
Chapter 5: The Definite Integral Section 5.2: Definite Integrals
5.6 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Antidifferentiation: The Indefinite Intergral Chapter Five.
The Definite Integral.
Warm Up 1) 2) 3)Approximate the area under the curve for 0 < t < 40, given by the data, above using a lower Reimann sum with 4 equal subintervals. 4)Approximate.
5.2 Definite Integrals Bernhard Reimann
Sigma Notations Example This tells us to start with k=1 This tells us to end with k=100 This tells us to add. Formula.
5.2 Definite Integrals. When we find the area under a curve by adding rectangles, the answer is called a Riemann sum. subinterval partition The width.
The Definite Integral Objective: Introduce the concept of a “Definite Integral.”
Calculus Date: 3/7/2014 ID Check Obj: SWBAT connect Differential and Integral Calculus Do Now: pg 307 #37 B #23 HW Requests: SM pg 156; pg 295 #11-17 odds,
Chapter 6 Integration Section 4 The Definite Integral.
4.3 Riemann Sums and Definite Integrals. Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits. Evaluate a.
4.2 Area Definition of Sigma Notation = 14.
Lesson 5-2 The Definite Integral. Ice Breaker See handout questions 1 and 2.
5.2 Definite Integrals Created by Greg Kelly, Hanford High School, Richland, Washington Revised by Terry Luskin, Dover-Sherborn HS, Dover, Massachusetts.
Adds the rectangles, where n is the number of partitions (rectangles) Height of rectangle for each of the x-values in the interval Width of partition:
Chapter 6 Integration Section 5 The Fundamental Theorem of Calculus (Day 1)
X01234 f(x)f(x) AP Calculus Unit 5 Day 5 Integral Definition and intro to FTC.
Riemann sums & definite integrals (4.3) January 28th, 2015.
Definite Integral df. f continuous function on [a,b]. Divide [a,b] into n equal subintervals of width Let be a sample point. Then the definite integral.
Riemann Sum. When we find the area under a curve by adding rectangles, the answer is called a Rieman sum. subinterval partition The width of a rectangle.
Area/Sigma Notation Objective: To define area for plane regions with curvilinear boundaries. To use Sigma Notation to find areas.
Definite Integrals & Riemann Sums
4.3: Definite Integrals Learning Goals Express the area under a curve as a definite integral and as limit of Riemann sums Compute the exact area under.
4-3: Riemann Sums & Definite Integrals Objectives: Understand the connection between a Riemann Sum and a definite integral Learn properties of definite.
Section 4.2 The Definite Integral. If f is a continuous function defined for a ≤ x ≤ b, we divide the interval [a, b] into n subintervals of equal width.
Definite Integrals, The Fundamental Theorem of Calculus Parts 1 and 2 And the Mean Value Theorem for Integrals.
4.3 Riemann Sums and Definite Integrals
30. Section 5.2 The Definite Integral Table of Contents.
5.2 – The Definite Integral. Introduction Recall from the last section: Compute an area Try to find the distance traveled by an object.
1. Graph 2. Find the area between the above graph and the x-axis Find the area of each: 7.
The Definite Integral. Area below function in the interval. Divide [0,2] into 4 equal subintervals Left Rectangles.
Riemann Sums and The Definite Integral
Chapter 5 AP Calculus BC.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Definite Integrals Finney Chapter 6.2.
The Area Question and the Integral
6.2 Definite Integrals.
Area & Riemann Sums Chapter 5.1
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Section 5.2 Definite Integrals.
Riemann Sums and Integrals
5.2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington.
Section 4.3 Riemann Sums and The Definite Integral
6.2 Definite Integrals.
Definition: Sec 5.2: THE DEFINITE INTEGRAL
Symbolic Integral Notation
Riemann sums & definite integrals (4.3)
6-2 definite integrals.
Presentation transcript:

Section 5.2: Definite Integrals Objectives: Define a Riemann Sum Connect Riemann Sum and Definite Integral Relate the Definite Integral and Area under the curve

Sigma Notation k tells us where to begin, n tells us where to end If n is ∞, terms go on forever, and ever, and ever, and ever……

Reimann Sum We can use sigma notation to approximate the area under a curve We will add up all the areas of the tiny, little rectangles. We call this a Reimann Sum Rectangles can lie either above or below the x-axis

The Definite Integral as a Limit of Riemann Sums f(x) is on a closed interval [a,b] f is integrable on [a,b] and is the definite integral of f over [a,b] NOTES: is called the partition, and is the longest subinterval length (also may see written as ) is the height of the rectangle (it is the value of the function at some value c in the kth subinterval is the width of the rectangle.

The Definite Integral of a Continuous Function of [a, b] Let f be continuous [a, b] be partitioned into n subintervals of equal length Δx = (b – a)/n. Then the definite integral of f over [a, b] is given by where each ck is chosen arbitrarily in the kth subinterval. (the more subintervals you have, the more accurate the area)

The Existence of Definite Integrals All continuous functions are integrable. That is, if a function f is continuous on an interval [a, b], then its definite integral over [a, b] exists.

Definite Integral notation When you find the value of the integral, you have evaluated the integral. The definite integral is a number!!

Let’s break it down….. What does all this mean???? Upper limit of Integration integrand x is the variable of integration Integral Sign Lower limit of integration Read as “The integral from a to b of f of x dx”

Express the limit as an integral. on [0,4]

Definite Integral and Area Area Under a Curve (as a Definite Integral) If y = f(x) is nonnegative and integrable over a closed interval [a, b] then the area under the curve y = f(x) from a to be is the integral of f from a to b.

Non-positive Integrable Functions

Any Integrable Function = (area above the x-axis) – (area below the x-axis)

Using Geometric Formulas to evaluate the integral

The Integral of a Constant If f(x) = c, where c is a constant, on the interval [a, b], then

Examples: Using Geometric Formulas

If you were driving at a constant speed of 65 mph from 8am to 11 am, how far did you travel? Write a definite integral, and evaluate.

Discontinuous Integrable Functions: Definition implies continuity, but there are some discontinuous integrable functions.