1 Analysis for Adaptive DOA Estimation with Robust Beamforming in Smart Antenna System 指導教授:黃文傑 W.J. Huang 研究生 :蔡漢成 H.C. Tsai.

Slides:



Advertisements
Similar presentations
OFDM Transmission over Wideband Channel
Advertisements

Minimum Redundancy MIMO Radar Chun-Yang Chen and P. P. Vaidyanathan California Institute of Technology Electrical Engineering/DSP Lab ISCAS 2008.
Adaptive IIR Filter Terry Lee EE 491D May 13, 2005.
Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems Sinem Colet, Mustafa Ergen, Anuj Puri, and Ahmad Bahai IEEE TRANSACTIONS ON BROADCASTING,
Manifold Sparse Beamforming
Development of Parallel Simulator for Wireless WCDMA Network Hong Zhang Communication lab of HUT.
1 DOA-ALOHA: Slotted ALOHA for Ad Hoc Networking Using Smart Antennas Harkirat Singh & Suresh Singh Portland State University, OR, USA.
1/44 1. ZAHRA NAGHSH JULY 2009 BEAM-FORMING 2/44 2.
1 Block-by-Block Blind Channel Estimation Algorithm Using Subcarrier Averaging for Multi-user OFDM Systems Presenter: Teng-Han Tsai ( 蔡騰漢 ) Institute of.
SMART ANTENNAS. Smart Antennas The presentation is divided into the following: Why? What? How?
APPLICATION OF SPACE-TIME CODING TECHNIQUES IN THIRD GENERATION SYSTEMS - A. G. BURR ADAPTIVE SPACE-TIME SIGNAL PROCESSING AND CODING – A. G. BURR.
Goals of Adaptive Signal Processing Design algorithms that learn from training data Algorithms must have good properties: attain good solutions, simple.
Outline What is an ad hoc network Smart Antenna Overview
10 January,2002Seminar of Master Thesis1 Helsinki University of Technology Department of Electrical and Communication Engineering WCDMA Simulator with.
Yung P. Lee (ASAP 2001, March 14, 2001) Science Applications International Corporation 1710 SAIC Drive McLean, VA Space-Time Adaptive.
STUDY OF DS-CDMA SYSTEM AND IMPLEMENTATION OF ADAPTIVE FILTERING ALGORITHMS By Nikita Goel Prerna Mayor Sonal Ambwani.
EE 525 Antenna Engineering
Smart antennas and MAC protocols in MANET Lili Wei
Prof.Dr. : Hamdy Al Mikati Comm. & Electronics Dep year 4th
For 3-G Systems Tara Larzelere EE 497A Semester Project.
John Thornton, Yuriy Zakharov, David Grace
Effect of Mutual Coupling on the Performance of Uniformly and Non-
Introduction to Adaptive Digital Filters Algorithms
ECE 8443 – Pattern Recognition ECE 8423 – Adaptive Signal Processing Objectives: Introduction SNR Gain Patterns Beam Steering Shading Resources: Wiki:
1 SMART ANTENNAS FOR WIRELESS COMMUNICATIONS JACK H. WINTERS AT&T Labs - Research Red Bank, NJ September 9, 1999.
Eigenstructure Methods for Noise Covariance Estimation Olawoye Oyeyele AICIP Group Presentation April 29th, 2003.
by P. Sriploy, M. Uthansakul and R. Wongsan
EFFECTS OF MUTUAL COUPLING AND DIRECTIVITY ON DOA ESTIMATION USING MUSIC LOPAMUDRA KUNDU & ZHE ZHANG.
1 PROPAGATION ASPECTS FOR SMART ANTENNAS IN WIRELESS SYSTEMS JACK H. WINTERS AT&T Labs - Research Red Bank, NJ July 17,
SMART ANTENNA.
Doc.: IEEE /0493r1 Submission May 2010 Changsoon Choi, IHP microelectronicsSlide 1 Beamforming training for IEEE ad Date: Authors:
Blind Beamforming for Cyclostationary Signals
Multiuser Detection (MUD) Combined with array signal processing in current wireless communication environments Wed. 박사 3학기 구 정 회.
© Imperial College LondonPage 1 WSEAS PLENARY LECTURE: The Challenges of Subspace Techniques and their Impact on Space-Time Communications. 29 th December.
Smart Antennas and Transmit Diversity for GSM Systems 指導教授:黃文傑 博士 學 生:曾凱霖 學 號: M 無線通訊實驗室.
Name : Arum Tri Iswari Purwanti NPM :
ECE 8443 – Pattern Recognition ECE 8423 – Adaptive Signal Processing Objectives: Signal and Noise Models SNIR Maximization Least-Squares Minimization MMSE.
CHANNEL ESTIMATION FOR MIMO- OFDM COMMUNICATION SYSTEM PRESENTER: OYERINDE, OLUTAYO OYEYEMI SUPERVISOR: PROFESSOR S. H. MNENEY AFFILIATION:SCHOOL OF ELECTRICAL,
TI DSPS FEST 1999 Implementation of Channel Estimation and Multiuser Detection Algorithms for W-CDMA on Digital Signal Processors Sridhar Rajagopal Gang.
Ali Al-Saihati ID# Ghassan Linjawi
Parametric Methods 指導教授:黃文傑 W.J. Huang 學生:蔡漢成 H.C. Tsai.
長庚大學無線通訊實驗室 MIMO - A solution for advanced wireless access 指導老師:黃文傑 博士 學生:吳濟廷
1 HAP Smart Antenna George White, Zhengyi Xu, Yuriy Zakharov University of York.
Introduction to Smart Antenna Advisor : Dr. Wen-Jye Huang Student : Chi-Ting Wu Wireless Communication LAB.
BY Siyandiswa Juanitta Bangani Supervisor: Dr R.Van Zyl
Wireless Data Transmission for High-Speed Train Control 指導教授:黃文傑 老師 指導教授:黃文傑 老師 學 生:曾凱霖 學 生:曾凱霖 學 號: M 學 號: M 無線通訊實驗室 無線通訊實驗室.
Performance of Adaptive Beam Nulling in Multihop Ad Hoc Networks Under Jamming Suman Bhunia, Vahid Behzadan, Paulo Alexandre Regis, Shamik Sengupta.
A Simple Transmit Diversity Technique for Wireless Communications 指導老師 : 黃文傑 博士 學生 : 吳濟廷
Smart antenna Smart antennas use an array of low gain antenna elements which are connected by a combining network. Smart antennas provide enhanced coverage.
Channel Capacity of MIMO Channels 指導教授:黃文傑 老師 指導教授:黃文傑 老師 學 生:曾凱霖 學 生:曾凱霖 學 號: M 學 號: M 無線通訊實驗室 無線通訊實驗室.
V- BLAST : Speed and Ordering Madhup Khatiwada IEEE New Zealand Wireless Workshop 2004 (M.E. Student) 2 nd September, 2004 University of Canterbury Alan.
研究生: 指導教授: Student : Advisor : LRA Detection 魏學文 林忠良 Harmoko H. R. Prof. S-W Wei Presentation Date: April 16, 2009.
Amplifier Nonlinearities in OFDM Multiple Antenna Systems FERNANDO GREGORIO Signal Processing Laboratory HUT.
Click to edit Master title style Click to edit Master text styles Second level Third level Fourth level Fifth level Wednesday, December 3, 2003Slide 1.
UWB (Ultra Wideband) Communication System 長庚電機通訊組 碩一 張晉銓 指導教授 : 黃文傑博士.
Variable Step-Size Adaptive Filters for Acoustic Echo Cancellation Constantin Paleologu Department of Telecommunications
Term paper on Smart antenna system
Data Communications to Train From High-Altitude Platforms
Smart Antennas Presented by :- Rajib Kumar Das.
Presented by : PARAMANAND SHARMA Roll No. : 207EE104
Optimum Passive Beamforming in Relation to Active-Passive Data Fusion
Pipelined Adaptive Filters
By Nikita Goel Prerna Mayor Sonal Ambwani
Smart Antenna Rashmikanta Dash Regd.no: ETC-A-52
EE608 Adaptive Signal Processing Course Project Adaptive Beamforming For Mobile Communication Group: 1 Chirag Pujara ( ) Prakshep Mehta.
SMART ANTENNAS Reham mahmoud Amira aboelnasr.
Spatial and Temporal Communication Theory Using Adaptive Antenna Array
Analysis of Adaptive Array Algorithm Performance for Satellite Interference Cancellation in Radio Astronomy Lisha Li, Brian D. Jeffs, Andrew Poulsen, and.
Beamforming.
Beamforming Weight Adaptation for Dynamic Channel Switching
Presentation transcript:

1 Analysis for Adaptive DOA Estimation with Robust Beamforming in Smart Antenna System 指導教授:黃文傑 W.J. Huang 研究生 :蔡漢成 H.C. Tsai

2 Outline Conception of Smart Antenna Beamforming Method DOA Estimation θ- LMS Algorithm (My Point) Local Minimum problems θ- LMS Algorithm with Robust Beamforming Conclusion

3 Conception of Smart Antenna There are constructed by some specially geometric antenna array. It changes the beam-pattern with some different methods. It increases the CINR and Capacity

4 Category -1 Switched Beam System

5 Category -2 Adaptive Beam System

6 Outline Conception of Smart Antenna Beamforming Method DOA Estimation θ- LMS Algorithm Local Minimum problems θ- LMS Algorithm with Robust Beamforming Conclusion

7 Beamforming Method Summation Beamforming Weighting DOA Estimation

8 Beamforming Tech. Array Response y(t) Output power P(w) 1.Conventional Beam-former 2.Capon’s Beam-former

9 Conv. Beamforming & Steering Vector d d θ (M-1)d X Y

10 ULA d = 0.5 λ M = 4 、 8 、 12

11 MVDR Beamforming(Capon’s)

12 Outline Conception of Smart Antenna Beamforming Method DOA Estimation θ- LMS Algorithm Local Minimum problems θ- LMS Algorithm with Robust Beamforming Conclusion

13 DOA Estimation Conventional Capon’s Subspace –MUSIC

14 Conventional DOA Estimation w(0~180) Conventional u(n) Receiving signal Pattern (0~180) DOA Est. w(n) Beamforming Weighting

15 Capon’s DOA Estimation w(0~180) Capon’s u(n) Receiving signal Pattern (0~180) DOA Est. w(n) Beamforming Weighting

16 MUSIC (MUltiple SIgnal Classification ) P MUSIC Pattern u(n) Receiving signal Eigen decomposition Noise Space V n a(0~180) DOA Est. w(n) Weighting Vector

17 Compare the three methods ULA M = 4 d = 0.5λ User’s DOA = 90° 、 120 ° SNR=10dB

18 Outline Conception of Smart Antenna Beamforming Method DOA Estimation θ- LMS Algorithm (My point) Local Minimum problems θ- LMS Algorithm with Robust Beamforming Conclusion

19 LMS (Least Mean Square )

20 w – LMS Algorithm d(n) w - LMS u(n) w(n) w(n+1) y(n) e(n) +

21 θ- LMS Algorithm + d(n) ө - LMS u(n) w(n) w(n+1) y(n) e(n) ө(n+1) ө(n) 4 x1

22 θ- LMS Algorithm u(n)w(n) w H ( n) u(n) -d(n) Cost function J(θ) find DOA θ 0 Beamforming Weighting by DOA θ 0 w(n) Weighting

23 Weighting is Instead of θ

24 Adaptive θ(n) is defined Definition =

25 ULA M = 4 d = 0.5λ DOA= 120 ° Initial DOA = 90 ° Step size = 0.01 SNR =20

26 ULA M = 4 d = 0.5λ DOA= 0 ° ~180 ° Initial DOA = 90 ° Step size = 0.01 SNR =20 DOA=90*sin(0:0.01:80*pi) + 90;

27 Steering Vector Tracking ULA M = 4 d = 0.5λ DOA= 0 ° ~180 ° Initial DOA = 90 ° Step size = 0.01 “*” steering vector “o” tracking vector DOA=90*sin(0:0.05:80*pi) + 90;

28 Beampattern Tracking ULA M = 4 d = 0.5λ DOA= 0 ° ~360 ° Initial DOA = 90 ° Step size = 0.01 “o” DOA DOA=180*sin(0:0.05:80*pi) + 180;

29 Outline Conception of Smart Antenna Beamforming Method DOA Estimation θ- LMS Algorithm Local Minimum problems θ- LMS Algorithm with Robust Beamforming Conclusion

30 Converse to Error Direction ULA M = 4 d = 0.5λ DOA= 90 ° Initial DOA = 120 ° Step size = 0.01

31 Error pattern d(n) x (n) 4 x1 d(n) x (n) w (0~180) e(0~180) 4 x1 +

32 Cost function ULA M = 4 d = 0.5λ DOA= 90 °

33 ULA M = 4 d = 0.5λ DOA= 0 ° ~180 ° DOA=90 ° Error Surface (DOA )

34 Error Surface (d ) ULA M = 4 d = 0 ~1λ DOA= 90 ° d=0.5 λ

35 Error Surface (M ) ULA M = 2 ~8 d = 0.5λ DOA= 90 ° M=4

36 2 Antsθ- LMS Algorithm d(n) ө - LMS u(n) w(n) w(n+1) y(n) e(n) ө(n+1) ө(n) 2 x1 +

37 Error Surface (M=2 d=0.5 ) ULA M = 2 d = 0.5λ DOA= 90 °

38 Error Surface (M=2 d=0.25 ) ULA M = 2 d = 0.25λ DOA= 90 °

39 Simulation (1) ULA M = 2 d = 0.25λ DOA= 5 ° Initial DOA = 175 ° SNR = 30 dB

40 ULA M = 2 d = 0.25λ DOA= 170 ° Initial DOA = 5 ° SNR = 30dB Simulation (2)

41 2 – 4 “θ-LMS” 2 antennas “θ-LMS” 4 antennas “θ-LMS” Initial θ

42 Outline Conception of Smart Antenna Beamforming Method DOA Estimation θ- LMS Algorithm Local Minimum problems θ- LMS Algorithm with Robust Beamforming Conclusion

43 Noise problem θ- LMS Algorithm needs high SNR level. High noise level brings the DOA estimation result worse. The DOA estimation error will cause the terrible performance We use the Robust Beamforming Method to conquer the estimation error problem.

44 The flow chart of Robust Beamforming Ref : Riba J., Goldberg J., Vazquez G., “Robust Beamforming for Interference Rejection in Mobile Communications”, Signal Processing, IEEE Transactions on

45 Robust Beamforming

46 BER Analysis BPSK ULA M = 4 d = 0.5 λ DOA = 90°

47 Outline Conception of Smart Antenna Beamforming Method DOA Estimation θ- LMS Algorithm Local Minimum problems θ- LMS Algorithm with Robust Beamforming Conclusion

48 Conclusion DOA is an important parameter for beamforming system. But, the MUSIC algorithm is complex. The new method “ө - LMS” is simpler to realized Robust Beamforming can repair the fault of “ө - LMS”

49 Future Work Noise and channel problem Multi-user problems SINR Analysis Multi-path & DOA distribution Moving Source analysis Performance Analysis (User # 、 DOA 、 SNR 、 Beamforming method 、 Antenna # …etc.) Adaptive Analysis (Step-size Moving DOA 、 SNR 、 other adaptive structure)

50 Capon’s Beamforming

51 Step Size

52 Cost function

53 New cost function  {J(  )} is defined partial J(  ) by 

54 The Formula Derives

55 Initial = 90 ° DOA = 0 ° ULA M = 2 d = 0.25λ DOA= 0 ° Initial DOA = 90 °

56 Initial = 90 ° DOA = 180 ° ULA M = 2 d = 0.25λ DOA= 180 ° Initial DOA = 90 °

57 Noise problem

58 Degree spreading k = 0 Ref : Riba J., Goldberg J., Vazquez G., “Robust Beamforming for Interference Rejection in Mobile Communications”, Signal Processing, IEEE Transactions on

59 Robust Beamforming

60 Complex Surface