Synthesis of superheavy elements at FLNR S. DMITRIEV Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, 141980, Russia.

Slides:



Advertisements
Similar presentations
SYNTHESIS OF SUPER HEAVY ELEMENTS
Advertisements

Reactions of Synthesis and Decay Properties of Superheavy Elements Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research.
The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Survival of Excited Compound Nuclei and Online Chemistry Experiments at Texas A&M University C. M. Folden III Cyclotron Institute, Texas A&M University.
The peculiarities of the production and decay of superheavy nuclei M.G.Itkis Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia.
1Managed by UT-Battelle for the U.S. Department of Energy Low-Energy Review, 30 August 2011 Search for 283,284,285 Fl decay chains Krzysztof P. Rykaczewski.
J.H. Hamilton 1, S. Hofmann 2, and Y.T. Oganessian 3 1 Vanderbilt University, 2 GSI 3 Joint Institute for Nuclear Research ISCHIA 2014.
Objective: additional identification of odd Z=113, 115 and 117 nuclei Radioactive properties of even-Z nuclei In accordance with the criteria for the discovery.
At the End of the Nuclear Map Yuri Oganessian Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Moscow region,
S. Sidorchuk (JINR, Dubna) Dubna Radioacive Ion Beams DRIBsIII: STATUS and PROSPECTS S. Sidorchuk (JINR, Dubna) 9-16 May 2013, Varna, Bulgaria 1.
Mass Analyzer of SuperHeavy Atoms Some recent results 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 106 nd Session, 24 September 2009, Dubna.
Status of the experiments on the synthesis of Element 117
Measurements of cross-sections of neutron threshold reactions and their usage in high energy neutron measurements Ondřej Svoboda Nuclear Physics Institute,
Ю.Ц.Оганесян Лаборатория ядерных реакций им. Г.Н. Флерова Объединенный институт ядерных исследований Пределы масс и острова стабильности сверхтяжелых ядер.
Heavy Element Research at Dubna (current status and future trends) Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research.
Objectives To learn the types of radioactive decay
14th INTERNATIONAL CONFERENCE ON NUCLEAR REACTION MECHANISMS Formation, separation and detection of evaporation residues produced in complete fusion reactions.
"Dead-time" reduction of the detection system of the Dubna Gas-filled Recoil Separator V.G.Subbotin, Yu.S.Tsyganov, A.A.Voinov, A.M.Sukhov, A.N.Polyakov,
23 July 2010FLNR Dubna Summer Students Practice Flerov Laboratory of Nuclear Reactions, JINR, Dubna 2010 JINR, Dubna 2010 Studies with radioactive ion.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Trends in heavy ion sciences 24 May, Why experimenters like to come to Dubna: Scientific success is always a good reason to organize a big party!
Chemistry of Spherical Superheavy Elements – The Road to Success.
Opportunities for synthesis of new superheavy nuclei (What really can be done within the next few years) State of the art Outline of the model (4 slides.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 104 th Session, 25 September 2008, Dubna.
Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research SHE in JINR 109 th Session of the JINR Scientific Council Feb.17-18,
POSSIBILITIES OF PRODUCTION OF TECHNETIUM SHORT-LIVED RADIOACTIVE ISOTOPES O.D. Maslov, S.N. Dmitriev, A.V. Sabelnikov Flerov Laboratory of Nuclear Reactions.
XXIV International Symposium on Nuclear Electronics and Computing. Bulgaria, Varna, 9-16 September, A.A. Voinov,V.G. Subbotin,A.M. Zubareva A.A.
Cross-sections of Neutron Threshold Reactions Studied by Activation Method Nuclear Physics Institute, Academy of Sciences of Czech Republic Department.
Synthesis of the heaviest elements at RIKEN Kosuke Morita Superheavy Element Laboratory RIKEN Nishina Center 2009/1/201Periodic Table of D.I. Mendeleev.
Preparation of gas-chemistry of Dubnium at IMP Z. Qin, J.S. Guo, X.L. Wu, H.J.Ding, W.X.Huang, Z.G. Gan, Institute of Modern Physics, Chinese Academy of.
Status Report of the LISOL Laser Ion Source Yu.Kudryavtsev, T.Cocolios, M.Facina, J.Gentens, M.Huyse, O.Ivanov, D.Pauwels, M.Sawicka, P.Van den Bergh,
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Review of synthesis of super heavy elements: reactions, decays and characterization. Experimental Setup of MASHA. Results of first experiments. study.
1 Programme Advisory Committee for Nuclear Physics 29 th meeting, January 2009 Programme Advisory Committee for Nuclear Physics 29 th meeting,
1 CNS summer school 2002 The RI-Beam Factory and Recent Development in Superheavy Elements Search at RIKEN ◆ Brief introduction to the RI Beam Factory.
O FF - LINE TECHNIQUE FOR DEUTERON BEAM PARAMETERS DETERMINATION USING SOLID STATE NUCLEAR TRACK DETECTORS E XPERIMENTS AT THE QUINTA TARGET (D UBNA, R.
1 Synthesis of superheavy elements with Z = in hot fusion reactions Wang Nan College of Physics, SZU Collaborators: S G Zhou, J Q Li, E G Zhao,
CHEMICAL IDENTIFICATION of the element Db as decay product of the element 115 in the 48 Ca Am reaction CHEMICAL IDENTIFICATION of the element Db.
Programme Advisory Committee for Nuclear Physics 33th meeting, January 2011 FLNR Radiochemical Research. Present Status and 7-year Plan S. Dmitriev.
Neutron production in Pb/U assembly irradiated by deuterons at 1.6 and 2.52 GeV Ondřej Svoboda Nuclear Physics Institute, Academy of Sciences of Czech.
Observation of new neutron-deficient multinucleon transfer reactions
Heavy ion nuclear physics in JINR /present and future/ Yuri Oganessian FLNR JINR 28-th of Nucl. Phys. PAC meeting June 19-20, 2008, JINR, Dubna.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 102 nd Session, September 2007, Dubna.
1 Комитет Полномочных Представителей 26 ноября 2010 г., г.Дубна ИДЕНТИФИКАЦИЯ И ИЗУЧЕНИЕ ХИМИЧЕСКИХ СВОЙСТВ НОВЫХ ЭЛЕМЕНТОВ ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ Д.И.
March, 2006SERC Course1  Z>92 (Heaviest Element in Nature) and upto Z= achieved by n irradiation or p,  and d bombardment in Cyclotron ( )
Reaction dynamics and nuclear structure of moderately neutron-rich Ne isotopes by heavy ion reactions Simone Bottoni University of Milan & KU Leuven INPC.
2 nd SPES Workshop Probing the Island of Stability with SPES beams.
1 Alushta 2016 CROSS SECTION OF THE 66 Zn(n,α) 63 Ni REACTION at CROSS SECTION OF THE 66 Zn(n, α) 63 Ni REACTION at E n = 4.0, 5.0 and 6.0 MeV I. Chuprakov,
FLNR FUNDAMENTAL & APPLIED RESEARCH PROGRAMME (further development in the frame of JINR’s 7-year’s plan) S.N. Dmitriev JINR, Dubna 111th Session of the.
Study of the complete-fusion reaction 226 Ra+ 48 Ca Voinov A.A. on behalf of the FLNR, LLNL, TUM, INS Vinca collaboration 10 th International Spring Seminar.
New trends in development of “Active Correlation” Technique 1.Introduction: DGFRS, detection system, real-time algorithm to search for ER-α sequences.
STATUS REPORT ON THE “MASHA” SET-UP A.M.Rodin, A.V.Belozerov, S.N.Dmitriev, Yu.Ts.Oganessian, R.N.Sagaidak, V.S.Salamatin, S.V.Stepantsov, D.V.Vanin PAC.
1 Комитет Полномочных Представителей 26 ноября 2010 г., г.Дубна ИДЕНТИФИКАЦИЯ И ИЗУЧЕНИЕ ХИМИЧЕСКИХ СВОЙСТВ НОВЫХ ЭЛЕМЕНТОВ ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ Д.И.
Study of the properties of the superheavy nucleus Z = 117 produced in the 249Bk + 48Ca reaction А.А. Voinov for the collaboration of for the collaboration.
HEAVY ELEMENT RESEARCH AT THE FLNR (DUBNA)
Fusion reactions with light stable and neutron-rich nuclei:
DSSSD for b decay investigations of heavy neutron-rich isotopes
Susan Hogle, Julie G. Ezold
Geometry of experimental setup for studies of inverse kinematics reactions with ROOT Students*: Dumitru Irina, Giubega Lavinia-Elena, Lica Razvan, Olacel.
Californium-252 Production in the High Flux Isotope Reactor
O. Svoboda, A. Krása, A. Kugler, M. Majerle, J. Vrzalová, V. Wagner
New Transuranium Isotopes in Multinucleon Transfer Reactions
Catalin Borcea IFIN-HH INPC 2019, Glasgow, United Kingdom
Presentation transcript:

Synthesis of superheavy elements at FLNR S. DMITRIEV Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, , Russia PASIFICHEM 2010, PASIFICHEM 2010, 18 December 2010, Honolulu, Hawaii, USA

2 Cn

3 SHE Cold & hot fusion cross sections fusion survival

4 48 Ca Enrichment up to 68-70% (Lesnoy) isotope production high flux reactors (Oak Ridge, Dimitrovgrad) isotope enrichment 98-99% S-2 separator (Sarov) New ECR-ion source (GANIL, JINR) New separator & detectors (Dubna, Livermore) New target matter technology of the target preparation – 0.3 mg/cm 2 Separation and detection of superheavy nuclei Efforts focused on the synthesis of SHE REACTORREGIMEACCELERATORS ISOTOPE ISOTOPEENRICHMENT TARGET TECHNOLOGY NEWRECOILSEPARATOR

FLNR U400 cyclotron

v ( A=48 ) = 0.11 c q = v ( A=288 ) = c q = 6.2+ Experimental Setup

7 Total detection efficiency: for α-particles…………..83% for SF-fragment…….~ 100% for both fragments……..42% Focal plane detector

Number of observed decay chains Element Element Element Element Element Element 112 8

9 SHE fusion survival Cold & hot fusion cross sections

Relatively long half-lives of isotopes of elements produced in the reactions with 48 Ca and chemical properties of SHE predicted theoretically permit new experiments aimed at:  the chemical identification of SHE ( 268 Db)  study of their chemical properties (112,114),  determination of masses of the SHE isotopes

Number of observed decay chains Element Element Element Element Element Element 112 8

The Bk-249 was produced at ORNL (USA) by irradiation: of Cm and Am targets for approximately 250 days by thermal-neutron flux of 2.5  neutrons/cm²·s in the HFIR (High Flux Isotope Reactor). Irradiation ends December 2008

13 249Bk was produced at High Flux Reactor in Oak-Ridge………...March 09, mg of pure 249Bk was shipped to Moscow…………… June 20, 2009 Arrived at Dimitrovgrad (Russia) for target preparation……………..July 01, 2009 Experiment have started at Dubna…………… July 27, 2009

cm μg/cm 2 BkO 2 on 1.5 μm-Ti foil 120 mm ω = 1700 rpm Target target-making June 2009 Yu. Oganessian 2010

Dubna Gas-Filled Recoil Separator Transmission for: EVR 35-40% target-like projectile-like Registration efficiency: for α-particles 87% for SF single fragment 100% two fragments ≈ 40% beam 48 Ca Experimental technique target 249 Bk Experiment was started July Yu. Oganessian 2010

First run: from July 27 to October 23, 2009 Beam dose: 2.4· %

17 2  1  3  Rg MeV 7.89 ms mm MeV str.#10, 12:28 Sep.10, mm 9.52 MeV ( ) MeV ( ) 2.22 s mm 4.25 s missing  N=N= ran N= ran  1  3  Rg ms mm mm MeV str.#10, 04:50 Sep.18, mm s MeV MeV ( ) 1.16 s mm s SF MeV ( ) MeV ( ) N= ran MeV 2  1  3  Rg ms mm mm mm 9.96 MeV str.#8, 04:23 Oct.17, mm 0.51 s MeV ( ) 0.24 s mm s SF MeV MeV SF MeV str.#10, 09:40 Aug.20,  1  3  Rg MeV ms mm mm missing  MeV 9.72 MeV s mm mm N= ran s SF N= ran MeV ( ) 2  1  3  Rg ms mm mm mm 9.36 MeV str.#10, 01:37 Oct.23, mm 0.42 s MeV s mm s SF MeV MeV E x =39 MeV Beam dose: 2.4·10 19

n E x =39 MeV E x =35 MeV Beam dose: 2.0·10 19

19 Synthesis of a new element with atomic number Z=117 Yu. Ts. Oganessian, 1) F. Sh. Abdullin, 1) P. D. Bailey, 2) D. E. Benker, 2) M. E. Bennett, 3) S N. Dmitriev, 1) J. G. Ezold, 2) J. H. Hamilton, 4) R. A. Henderson, 5) M. G. Itkis, 1) Yu. V. Lobanov, 1) A. N. Mezentsev, 1) K. J. Moody, 5) S. L. Nelson, 5) A.N. Polyakov, 1) C. E. Porter, 2) A. V. Ramayya, 4) F. D. Riley, 2) J. B. Roberto, 2) M. A. Ryabinin, 6) K. P. Rykaczewski, 2) R. N. Sagaidak, 1) D. A. Shaughnessy, 5) I.V. Shirokovsky, 1) M. A. Stoyer, 5) V. G. Subbotin, 1) R. Sudowe, 3) A. M. Sukhov, 1) Yu. S. Tsyganov, 1) V. K. Utyonkov, 1) A. A. Voinov, 1) G. K. Vostokin, 1) and P. A. Wilk 5) 1 Joint Institute for Nuclear Research, RU Dubna, RF 2 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 3 University of Nevada Las Vegas, Las Vegas, NV 89154, USA 4 Vanderbilt University, Nashville, TN 37235, USA 5 Lawrence Livemore National Laboratory, Livermore, CA 94551, USA 6 Research Institute of Atomic Reactors, RU Dimitrovgrad, RF (Dated: April 1, 2010) The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes and were produced in fusion reactions between 48 Ca and 249 Bk. Decay chains involving eleven new nuclei were identified by means of the Dubna Gas Filled Recoil Separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z≥111, validating the concept of the long sought island of enhanced stability for super-heavy nuclei

20 Decay properties of the nuclei in the decay chains of Z=117 isotopes Yu. Oganessian 2010

21 Target ( 249 Bk ;  0,5 mg/cm 2 ) SiO 2 - Ta 800°C (4  ) (4  ) He/Ar (70/30) CHEMISTRY OF THE 113 ELEMENT Au pairs 2.5m 1 L/min

22 Capillary length from target chamber to detector system is 2.5 m

23 16 pairs of gold covered detectors

24 48 Ca Bk Target 249 Bk (0.5 mg∙cm -2 ) nat Nd (30 μg∙cm -2 ) 48 Ca E mid. target = 252 MeV I ~ 9 eμA Irradiation: – ; target I ; target II ∙10 18

25 Alpha and SF spectra

DGFRS 04 May :05:4616 May :29:54 Bk-target I Bk-target II α2α2α2α MeV s Mt 278 α4α4α4α4 Rg 282 α3α3α3α MeV 6.49 s Bh 274 α5α5α5α5 SF MeV h α6α6α6α MeV min Db Bk + 48 Ca 3n 9.62 MeV α1α1α1α1 Bot (40) MeV MeV α2α2α2α (10) MeV 9.43 MeV Mt 278 α4α4α4α4 Rg 282 α3α3α3α3 9.55(19) MeV 9.14 MeV Bh 274 α5α5α5α5 SF TKE = 219(5) MeV 33.4 h α6α6α6α6 8.80(10) MeV 8.43 MeV Db (10) MeV 9.56 MeV (10) MeV MeV α1α1α1α1 1.3 min 7.4 min 11.0 s 13 s 0.74 s 8.1 s 28.3 s 16 s s 1.0 s 112 ms 45 ms E* = 35 MeV 1 event α2α2α2α MeV 1.85min Mt 278 α4α4α4α4 Rg 282 α3α3α3α3 Bh 274 α5α5α5α5 SF MeV h α6α6α6α MeV <1.42 min Db Bk + 48 Ca 3n α1α1α1α1 Bot. 4 Top 4 26 preliminary

DGFRS 04 May :05:4616 May :29:54 Bk-target I Bk-target II α2α2α2α MeV s Mt 27 8 α4α4α4α4 Rg 282 α3α3α3α MeV 6.49 s Bh 27 4 α5α5α5α5 SF MeV h α6α6α6α MeV min Db Bk + 48 Ca 3n 9.62 MeV α1α1α1α1 Bot (40) MeV MeV α2α2α2α (10) MeV 9.43 MeV Mt 278 α4α4α4α4 Rg 282 α3α3α3α3 9.55(19) MeV 9.14 MeV Bh 274 α5α5α5α5 SF TKE = 219(5) MeV 33.4 h α6α6α6α6 8.80(10) MeV 8.43 MeV Db (10) MeV 9.56 MeV (10) MeV MeV α1α1α1α1 1.3 min 7.4 min 11.0 s 13 s 0.74 s 8.1 s 28.3 s 16 s s 1.0 s 112 ms 45 ms E* = 35 MeV 1 event α2α2α2α MeV 1.85m in Mt 27 8 α4α4α4α4 Rg 282 α3α3α3α3 Bh 27 4 α5α5α5α5 SF MeV h α6α6α6α MeV <1.42 min Db Bk + 48 Ca 3n α1α1α1α1 Bot. 4 Top 4 27 preliminary

29 Hg-185 DISTRIBUTION

30 DGFRS Chemistry of the Element MeV 3.6 s Mt 276 Rg MeV 0.72 s Bh 272 SF TKE = 205(5) MeV 16 h 9.02 MeV 9.8 s Db Am + 48 Ca 3n MeV 0.48 s α2α2α2α2 α4α4α4α4 α3α3α3α3 α5α5α5α5 α1α1α1α MeV 87 ms (9) MeV MeV α2α2α2α α3α3α3α3 SF TKE = 218(5) MeV 38 s Rg (8) MeV 9.48(11) MeV 9.96 MeV (8) MeV MeV α1α1α1α1 7.9 s 1.2 s 0.32 s 0.22 s 21 ms 10 ms (40) MeV MeV α2α2α2α (10) MeV 9.43 MeV Mt 278 α4α4α4α4 Rg 282 α3α3α3α3 9.55(19) MeV 9.14 MeV Bh 274 α5α5α5α5 SF TKE = 219(5) MeV 33.4 h α6α6α6α6 8.80(10) MeV 8.43 MeV Db (10) MeV 9.56 MeV (10) MeV MeV α1α1α1α1 1.3 min 7.4 min 11.0 s 13 s 0.74 s 8.1 s 28.3 s 16 s s 1.0 s 112 ms 45 ms Bk + 48 Ca

Experimental program of Chemistry of 113 element (243Am + 48Ca) Chemistry of 114 element (244Pu + 48Ca) Mass number measurement of elements 242 Pu( 48 Ca,3n) (0.5s,α) –> (4 s) 243Am(48Ca,3n) –> (0.1 s, α) –> (0.5 s)

Introduction MA ss S eparator of H eavy A toms The proposed setup is a combination of the so-called ISOL method of synthesis and separation of radioactive nuclei with the classical method of mass analysis, allowing mass identification of the synthesized nuclides in the wide mass range. General ion-optical parameters: Range of energy variation, kV15-40 Range of Br variation, Tm Mass acceptance, %+/-2.8 Angular acceptance, mrad+/-14 Diameter the ion source exit hole, mm 5.0 Horizontal magnification at F1/F20.39/0.68 Mass dispersion at F1/F2, mm/%1.5/39.0 Linear mass resolution at F175 Mass resolution at F2 1150

Mass-spectrometer MASHA at the beam line of the cyclotron U-400M STATUS of the MASS-SPECTROMETER

FIRST EXPERIMENTS Mass identification of 112 и 114 elements synthesized at the reactions Mass identification of 112 и 114 elements synthesized at the reactions 242 Pu( 48 Ca,3n) (0.5 s) –> (4 s) Mass identification of 113 elements synthesized at the reaction Mass identification of 113 elements synthesized at the reaction 243 Am( 48 Ca,3n) (0.1 s) → (0.5 s) FIRST EXPERIMENTS Mass identification of 112 и 114 elements synthesized at the reactions Mass identification of 112 и 114 elements synthesized at the reactions 242 Pu( 48 Ca,3n) (0.5 s) –> (4 s) Mass identification of 113 elements synthesized at the reaction Mass identification of 113 elements synthesized at the reaction 243 Am( 48 Ca,3n) (0.1 s) → (0.5 s)

DRIBs-IIIDRIBs-III  Creation of the new experimental hall (≈ 2600 м 2 )  Creation of high current heavy ion accelerator  Development and creation of next generation set-ups

Gas-Filled Separator Ready time must be synchronized with the construction of the new experimental hall & accelerator ADVANTAGES:  presence of a gas – H 2, He; high energy and charge acceptances; additional target cooling through convection;  low number of elements;  no high voltage.

NEW EXPERIMENTAL HALL

a)b) c)d) a). Cumulative alpha spectrum from 16 pairs of detectors b). Cumulative spectrum of fission fragments from 16 pairs of detectors c). Cumulative alpha spectrum from 8 th pair of detectors d). Cumulative spectrum of fission fragments from 8 th pair of detectors

a). Cumulative alpha spectrum from 16 pairs of detectors b). Cumulative spectrum of fission fragments from 16 pairs of detectors c). Cumulative alpha spectrum from 4 th pair of detectors d). Cumulative spectrum of fission fragments from 4 th pair of detectors a)b) c)d)

Chromatographic deposition of 209 At and 185 Hg in the detector array at 0°C together with a standard Monte-Carlo simulation of the 209 At deposition.

The deposition of 185 Hg compared to the deposition of 209 At in the isothermal detector array at 0°C together with Monte-Carlo simulation of the depositions. The Hg deposition points to an efficient chromatographic gold surface the second part of the experiment.

THANK YOU FOR YOUR TIME!