Байкальский нейтринный эксперимент Г.В.Домогацкий 1 23 декабря 2009г. Москва.

Slides:



Advertisements
Similar presentations
Lake Baikal Neutrino Experiment Present and Future G.V.Domogatsky (INR, Moscow) for the Baikal collaboration.
Advertisements

R.Shanidze, B. Herold, Th. Seitz ECAP, University of Erlangen (for the KM3NeT consortium) 15 October 2009 Athens, Greece Study of data filtering algorithms.
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Kay Graf University of Erlangen for the ANTARES Collaboration 13th Lomonosov Conference on Elementary Particle Physics Moscow, August 23 – 29, 2007 Acoustic.
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
Prototype string for a km3 Baikal neutrino telescope Roma International Conference on Astroparticle Physics V.Aynutdinov, INR RAS for the Baikal Collaboration.
Search for relativistic magnetic monopoles with the Baikal Neutrino Telescope E. Osipova -MSU (Moscow) for the Baikal Collaboration (Workshop, Uppsala,
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
KM3NeT The Birth of a Giant V. Popa, KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest, Romania.
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
1 S. E. Tzamarias Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Readout Electronics DAQ & Calibration.
Moscow, V. Aynutdinov, INR RAS for Baikal collaboration The Baikal neutrino telescope: The Baikal neutrino telescope: Physics results and future.
C.DistefanoCRIS 2008 – Salina, September The KM3Net Consortium Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud Towards a km3-scale.
Apostolos Tsirigotis Simulation Studies of km3 Architectures KM3NeT Collaboration Meeting April 2007, Pylos, Greece The project is co-funded by the.
Status of KM3NeT (Detector Design Optimisations) Christopher Naumann, CEA Saclay – IRFU / SPP for the KM3NeT consortium 44 th Reconcontres de Moriond,
Antoine Kouchner Université Paris 7 Laboratoire APC - CEA/Saclay for the ANTARES collaboration Neutrino Astronomy: a new look at the Galaxy Astronomy Neutrino.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
SINP MSU, July 7, 2012 I.Belolaptikov behalf BAIKAL collaboration.
Data acquisition system for the Baikal-GVD neutrino telescope Denis Kuleshov Valday, February 3, 2015.
AMANDA and IceCube neutrino telescopes at the South Pole Per Olof Hulth Stockholm University.
Baikal Neutrino Experiment Vladimir Aynutdinov for the Baikal Collaboration Athens, October 13, 2009.
Physics results and perspectives of the Baikal neutrino project B. Shoibonov (JINR, Dubna) for the Baikal collaboration February 2009.
CIPANP 2006K. Filimonov, UC Berkeley From AMANDA to IceCube: Neutrino Astronomy at the South Pole Kirill Filimonov University of California, Berkeley.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
STATUS OF BAIKAL NEUTRINO EXPERIMENT: Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for the Baikal Collaboration HECR’ May.
Studies on PINGU’s Sensitivity to the Neutrino mass Hierarchy P. Berghaus, H.P. Bretz, A. Groß, A. Kappes, J. Leute, S. Odrowski, E. Resconi, R. Shanidze.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
Status of the Baikal Neutrino Telescope NT200+ VLVNT2 Workshop, Catania, Ralf Wischnewski DESY, Zeuthen Outline: - Motivation / Methods - The.
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
The AMANDA-II Telescope - Status and First Results - Ralf Wischnewski / DESY-Zeuthen for the AMANDA Collaboration TAUP2001, September.
The ANTARES Project Sino-French workshop on the Dark Universe Stephanie Escoffier Centre de Physique des Particules de Marseille On behalf of the ANTARES.
1 A.Tsirigotus Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch The NESTOR O.M.
Status and Results Elisa Bernardini DESY Zeuthen, Germany VLVnT Workshop Amsterdam, Oct (
R. Coniglione, VLVnT08, Toulon April ‘08 KM3NeT: optimization studies for a cubic kilometer neutrino detector R. Coniglione P. Sapienza Istituto.
Baikal-GVD: status and plans Denis Kuleshov Denis Kuleshov INR, Moscow, Oct 28, 2015.
Gigaton Volume Detector in Lake Baikal: status of the project Zh.-A. Dzhilkibaev (INR, Moscow) Zh.-A. Dzhilkibaev (INR, Moscow) for the Baikal Collaboration.
BAIKAL-GVD: status, results and plans Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Amsterdam, October 17,
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
The BAIKAL Neutrino Telescope: from NT200 to NT th ICRC Pune, India, Ralf Wischnewski DESY-Zeuthen.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
The BAIKAL-GVD project of a km3-scale neutrino telescope in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Beijing, 17 August, International.
Isabella Amore VLV T08, Toulon, France April 2008 International Workshop on a Very Large Volume Neutrino Telescope for the Mediterranean Sea Results.
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Gigaton Volume Detector in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Cassis, May 3, th International Workshop on Ring Imaging.
Search for Ultra-High Energy Tau Neutrinos in IceCube Dawn Williams University of Alabama For the IceCube Collaboration The 12 th International Workshop.
High energy neutrino acoustic detection activities in Lake Baikal: status and plans N.Budnev for the Baikal Collaboration Irkutsk State University, Russia.
Prototyping Phase of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Rome, May,
THE BAIKAL NEUTRINO EXPERIMENT: STATUS, SELECTED PHYSICS RESULTS, AND PERSPECTIVES Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for.
Alexander Kappes ECAP, Universität Erlangen-Nürnberg for the KM3NeT Consortium 2009 EPS HEP, Krakow, 16. July 2009 The KM3NeT project: Towards a km 3 -scale.
KM3NeT Neutrino conference 2-7 June 2014, Boston, U.S.A. Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino telescope in.
The prototype string for the km3 scale Baikal neutrino telescope VLVnT April 2008 Vladimir Aynutdinov, INR RAS for the Baikal Collaboration for.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
Status of the Baikal-GVD experiment
P.Kooijman, UVA-GRAPPA, UU, Nikhef
Status of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow),
Julia Becker for the IceCube collaboration
Data acquisition system for the Baikal-GVD neutrino telescope
An expected performance of Dubna neutrino telescope
The Antares Neutrino Telescope
Baikal-GVD (technical report)
Performance of the AMANDA-II Detector
MC studies of the KM3NeT physics performance Rezo Shanidze
Presentation transcript:

Байкальский нейтринный эксперимент Г.В.Домогацкий 1 23 декабря 2009г. Москва

1.Институт Ядерных Исследований РАН, Москва, Россия 2.Иркутский Государственный Университет, Иркутск, Россия 3.Научно Исследовательский Институт Ядерной Физики МГУ, Москва, Россия 4. DESY-Zeuthen, Zeuthen, Germany. 5. Объединенный Институт Ядерных Исследований, Дубна, Россия 6. Нижегородский Государственный Технический Университет, Нижний Новгород, Россия 7.С. Петербургский Государственный Морской Технический Университет, С. Петербург, Россия 8. Курчатовский Институт, Москва, Россия Коллаборация БАЙКАЛ

A NT200+/Baikal-GVD (~2017) N N KM3NeT (~2017) /IceCube Amanda/IceCube(~2011) ANTARES 59 Strings in operation

2009 August 20Lepton Photon 2009 Per Olof Hulth High Energy neutrino telescopes (optical) 2009 August 20 4 Lepton Photon 2009 Per Olof Hulth

NT200: 8 strings (192 optical modules ) Height x  = 70m x 40m, V inst =10 5 m 3 Effective area: 1 TeV~2000m² Eff. shower volume: 10 TeV~ 0.2 Mton Quasar photodetector (  =37cm) NT200+ = NT outer strings (36 optical modules) Height x  = 210m x 200m, V inst = 5  10 6 m 3 Eff. shower volume: 10 4 TeV ~ 10 Mton Status of NT200+ LAKE BAIKAL ~ 3.6 km to shore, 1070 m depth NT200+ is operating now in Baikal lake (~10 months/yr. persistent data taking)

2009 August 20Lepton Photon 2009 Per Olof Hulth ANTARES Installation: Junct.Box - Dec 2002 Line 1 - March 2006 Line Dec 2007 Line May Optical modules 12 lines 25 storeys / line 3 PMTs / storey Installation: Junct.Box - Dec 2002 Line 1 - March 2006 Line Dec 2007 Line May Optical modules 12 lines 25 storeys / line 3 PMTs / storey <- 40 km 2500 m depth 2009 August 20 6 Lepton Photon 2009 Per Olof Hulth

2009 August 20Lepton Photon 2009 Per Olof Hulth 2009 August 20 IceCube timeline In the ice: 2005: 1 string 2006: 9 strings 2007: 22 strings (publishing) 2008: 40 strings (analyzing) 2009: 59 strings (running) (includes 1 DeepCore string) Planned: 2010: 77 strings (includes 6 DeepCore strings) 2011: 86 strings (includes 6 DeepCore strings) 15-year design lifetime IceCube timeline In the ice: 2005: 1 string 2006: 9 strings 2007: 22 strings (publishing) 2008: 40 strings (analyzing) 2009: 59 strings (running) (includes 1 DeepCore string) Planned: 2010: 77 strings (includes 6 DeepCore strings) 2011: 86 strings (includes 6 DeepCore strings) 15-year design lifetime Deployed strings 7 Lepton Photon 2009 Per Olof Hulth

ПЛАН Регламентные работы на детекторе НТ200+ Регламентные работы на детекторе НТ200+ Разработка и испытания прототипа гирлянды глубоководных регистрирующих модулей и элементов системы управления кластера детектора НТ1000 Разработка и испытания прототипа гирлянды глубоководных регистрирующих модулей и элементов системы управления кластера детектора НТ1000 Набор и анализ данных детектора НТ200+ Набор и анализ данных детектора НТ200+ Работа над проектом гигатонного детектора Работа над проектом гигатонного детектора НТ1000 (BAIKAL-GVD) НТ1000 (BAIKAL-GVD)

Scientific Program A tmospheric neutrinos D iffuse neutrino flux WIMP from the Earth Center N eutrinos from GRB WIMP from the Sun NT200 Magnetic Monopoles Atmospheric muon background WIMPs in the Sun WIMPs in the Earth Center + Local neutrino sources, Diffuse neutrino flux

Neutrinos from WIMPs annihilation in the Sun and Earth Sun Baikal NT200: , hard Baksa n’199 7 AMANDA- II’2001, hard MACR O’199 8 Super- K’2001 IceCube- 22’2007, hard Earth Limits on muon flux - 48 events selected expected from atm. muons with oscillations and without osc. 90% c.l. limit on excess muon flux (m  > 100 GeV):  < 3x10 3 km -2 yr 1 90% c.l. limit on excess muon flux (m  > 100 GeV):  < 1.2x10 3 km -2 yr -1 Events within diff. cones around nadir No excess of events above atm. BG Sun-mismatch angle distribution 1008 live-days data sample 1038 live-days data sample

GRB Neutrino Search 11 Search for direction + time correlations with 303 GRBs observed by BATSE in , using the upward-going muon data sample. Time window: (t GRB + T s) - (t GRB -5s) Half angle of observation cone: Ψ = 5 o Observed number of events – 1 event Expected number of bg. events – 2.7 events SK Baikal NT200 Amanda-II “Green’s function” Upper Limits on GRB neutrino fluence (model independent)

ClasterStr. section m GVD - Preliminary design Layout: ~ 2300 Optical Modules, 96 Strings, 12 Clusters String comprises 24 OMs, which are combined in 2 independent Sections Cluster contains 8 strings Instrumented volume: 0.4 – 0.6 km 3 Detection Performance Cascades ( E>100 TeV): V eff ~0.3 – 0.8 km 3 δ(lgE) ~0.1, δθ med ~ 4 o Muons ( E>10 TeV): S eff ~ 0.2 – 0.5 km 2 δθ med ~ 0.5 o -1 o

Optimisation of GVD configuration (preliminary) Parameters for optimization: Z – vertical distance between OM R – distance between string and cluster centre H – distance between cluster centres Muon effective area R=80 m R=100 m R=60 m The compromise between cascade detection volume and muon effective area: H=300 m R = 60 m Z = 15 m Trigger: coincidences of any neighbouring OM on string (thresholds 0.5&3p.e.) PMT: R7081HQE,10”, QE~0.35

GVD – R&D ( ) GVD - Key Elements and Systems: - Optical Module - FADC-readout system - Section Trigger Logics - Calibration - Data Transport - Cluster Trigger System, DAQ - Data Transport to Shore OM 12 OMs2 Sections8 Strings Shore SectionStringCluster

GVD prototype string (2008 – 2009) BEG PC SM NT200+ with experimental string String communication center Optical module In-situ tests of basic elements of GVD measuring system with prototypes strings

Basic parameters of prototype string String length: 110 m Number of Optical Modules: 12 Number of Sections: 2 Number of FADC channels: 12 PMT: Photonis XP1807 (12”) : 6 Hamamatsu R8055(13”) : 6 FADC Time Window: 5  s FADC frequency: 200 MHz Data analysis in progress now 1.Monitoring of the optical module operation. 2.Test the string operation with LED and LASER. Experimental material: April – Jun 2009

Cluster DAQ center Cluster of strings 8 Strings String – 2 sections (2×12 OM) Cluster DAQ Centre: - PC-module with optical Ethernet communication to shore (data transmission and cluster synchronization) - Trigger module with 8 FADC channel for the measure of string trigger time; - Data communication module – 8 DSL-modems, modem data flaw up to 7 Mbit/s for 1 km. - Power control system Calibration system Two Lasers Synchronization – common signal “Acknowledgement” for all strings. GVD – R&D ( )

K din ~10 7 The new generation Baikal Optical Module PM: XP1807(12”), R8055(13”) ‏, R7081HQE(10”) QE ~0.24 QE ~0.2 QE~0.35 HV unit: SHV12-2.0K,TracoPower OM controller: monitoring, calibration, and PMT control; Amplifier: K amp = 10 BEG PMT 1 AmplifierFADC 1 90 m coax. cable OM PMT 12 AmplifierFADC m coax. cable … BEG (FADC Unit): - 3 FADC-board: 4-channel, 12 bit, 200 MHz; - OM power controller ; - VME controller: trigger logic, data readout from FADC, and connection via local Ethernet From the analogue signal to digital data (wave-form) GVD – R&D ( ) OM, Front-end Electronics Measuring channels

String Section – basic cell of the Cluster Section consist of: - 12 Optical Modules - BEG with 12 FADC channels - Service Module (SM) with LEDs for OM calibration, string power supply, and acoustic positioning system. Trigger: coincidences of neighbouring OM (thresh. ~0.5&3 p.e.) expected count rate ~ 100 Hz Communication : DSL-modem: expected dataflow ~0.5Mbit/s (only time intervals containing PMT pulses are transmitted) GVD – R&D ( )

Time resolution of measuring channels (in-situ tests) LED flasher produces pairs of delayed pulses. Light pulses are transmitted to each optical module (channel) via individual optical fibres. Delay values are calculated from the FADC data. Measured delay dT between two LED pulses LED1 and LED 2 pulse amplitude Example of a two-pulse LED flasher event (channel #5) LED1 LED2 dT (Expected)=497.5 ns = ns = 1.6 ns

Time accuracy of measuring channels In-situ test with Laser Time accuracy  T  (time resolution) & (accuracy of time calibration with LED flasher) LASER 110 m OM#7 OM#8 OM#9 OM#10 OM#11 OM#12 OM#1 OM#2 OM#3 OM#4 OM#5 OM#6 97 m r1r1 r2r2 Differences between dT measured with Laser and expected dT in dependence on distances between channels dr  T distribution on channel combination  T < 3 ns Test with LASER  T = dT EXPECTED = (r 2 -r 1 )  c water dT LASER - time difference between two channels measured for Laser pulses (averaged on all channel combinations with fixed (r 2 -r 1 ))

Schedule and Cost: >2006 Activity towards the Gigaton Volume Detector Prototype String ( test of GVD key elements and systems) 2010 Technical Design Report Preparatory Phase, Prototype of Cluster (in-situ test) Fabrication (OMs, cables, connectors, electronics) Construction ( ) GVD Overall cost ( without personnel, contingency, overhead ) ~ 25 M€ Detector ~ 20 M€. Logistics, including infrastructure ~ 5 M€

Physics with cascades Neutrino Flux Composition (flavor content) Energy spectrum: Global anisotropy (extragalactic sources) Local anisotropy (Galactic plane) Point sources (complimentary to muons) Transient sources (GRB, …): time + space correlation with  -rays – relax the cuts Flux composition from astrophysical sources at Earth: ~ 1:1:1 e : E ~ E cas  : E ~ E  +E cas (contained events)  : E ~ E cas

Monitoring of Optical Module operation OM temperature PMT voltage OM monitoring parameters: - PMT high voltage; - PMT count rate; - Temperature; - OM low voltages: 12 V, 5 V, -5 V … OM3 OM5 Example of PMT voltage monitoring : Example of PMT count rate monitoring