Massive star feedback – from the first stars to the present Jorick Vink (Keele University)

Slides:



Advertisements
Similar presentations
arvard.edu/phot o/2007/m51/. Confronting Stellar Feedback Simulations with Observations of Hot Gas in Elliptical Galaxies Q. Daniel Wang,
Advertisements

Low-metallicity galaxies at low redshifts Y. I. Izotov Main Astronomical Observatory, Kyiv, Ukraine.
The Standard Solar Model and Its Evolution Marc Pinsonneault Ohio State University Collaborators: Larry Capuder Scott Gaudi.
Compact remnant mass function: dependence on the explosion mechanism and metallicity Reporter: Chen Wang 06/03/2014 Fryer et al. 2012, ApJ, 749, 91.
Efficient Monte Carlo continuum radiative transfer with SKIRT Maarten Baes 2 nd East-Asia Numerical Astrophysics Meeting, Daejeon, Korea 3 November 2006.
The Fate of Massive Stars Post Main-Sequence Evolution of Massive Stars The Classification of Supernovae Core-Collapse Supernovae Gamma Ray Bursts Cosmic.
The evolution and collapse of BH forming stars Chris Fryer (LANL/UA)  Formation scenarios – If we form them, they will form BHs.  Stellar evolution:
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
The Size, Structure & Ionization of the Broad-Line Region in NGC 3227 and NGC 4051 Nick Devereux (ERAU) Emily Heaton (ERAU) May 22 nd, 2013 Naples, Italy.
Metallicity Dependent Wolf-Rayet winds Metallicity Dependent Wolf-Rayet winds PAUL CROWTHER.
LOCATions of WR stars, SNE IB/c and GRBs Giorgos Leloudas Oskar Klein Centre, Stockholm University IAU 279, Nikko, 8 March 2012.
 Wolf-Rayet Stars & the Luminous Blue Variables 2014/11/12 Wednesday Luqian Wang.
Astronomy 535 Stellar Structure Evolution. Course Philosophy “Crush them, crush them all!” -Professor John Feldmeier.
The Molecular Environment of the SNR HESS J (G ) refs: By: Zhang, Xiao ( )
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Black holes: Introduction. 2 Main general surveys astro-ph/ Neven Bilic BH phenomenology astro-ph/ Thomas W. Baumgarte BHs: from speculations.
Stars science questions Origin of the Elements Mass Loss, Enrichment High Mass Stars Binary Stars.
Winds of cool supergiant stars driven by Alfvén waves
NASA's Chandra Sees Brightest Supernova Ever N. Smith et al. 2007, astro-ph/ v2.
Numerical Modeling of Hierarchical Galaxy Formation Cole, S. et al. 2000, MNRAS 319, Adam Trotter December 4, 2007 Astronomy 704, UNC-Chapel Hill,
Stellar Winds and Mass Loss Brian Baptista. Summary Observations of mass loss Mass loss parameters for different types of stars Winds colliding with the.
J. Cuadra – Accretion of Stellar Winds in the Galactic Centre – IAU General Assembly – Prague – p. 1 Accretion of Stellar Winds in the Galactic Centre.
Radiation Hydrodynamic simulations of super-Eddington Accretion Flows super-Eddington Accretion Flows Radiation Hydrodynamic simulations of super-Eddington.
ArXiv: v1 Ref:arXiv: v1 etc.. Basic analytic scaling for disk mass loss Numerical models Results of numerical models Radiative ablation.
Galaxy Formation and Evolution Chris Brook Modulo 15 Room 509
The Collapsar Model for Gamma-Ray Bursts S. E. Woosley (UCSC) Weiqun Zhang (UCSC) Alex Heger (Univ. Chicago) Andrew MacFadyen (Cal Tech) Harvard CfA Meeting.
Evolutionary Population Synthesis models Divakara Mayya INAOEhttp:// Advanced Lectures on Galaxies (2008 INAOE): Chapter 4.
ROTATING MASSIVE STARS as Long Gamma-Ray Burst progenitors Matteo Cantiello - Sterrekundig Instituut Utrecht as Long Gamma-Ray Burst progenitors Matteo.
Unravelling the formation and evolutionary histories of the most massive galaxies Ilani Loubser (Univ. of the Western Cape)
Modeling Disks of sgB[e] Stars Jon E. Bjorkman Ritter Observatory.
Qingkang Li Department of Astronomy Beijing Normal University The Third Workshop of SONG, April, 2010 Disks of Be Stars & Their Pulsations &
A few Challenges in massive star evolution ROTATIONMAGNETIC FIELD MULTIPLICITY How do these distributions vary with metallicity? How do these distributions.
Mass loss and the Eddington Limit Stan Owocki Bartol Research Institute University of Delaware Collaborators: Nir Shaviv Hebrew U., Israel Ken GayleyU.
Collapsar Accretion and the Gamma-Ray Burst X-Ray Light Curve Chris Lindner Milos Milosavljevic, Sean M. Couch, Pawan Kumar.
The Role of Giant LBV Eruptions in the Evolution of Very Massive Stars Nathan Smith CASA, U. Colorado In collaboration with Stan Owocki (U. Delaware) In.
Mass Loss and Winds All massive stars with L>104LSun have winds
Modelling SN Type II From Woosley et al. (2002) Woosley Lecture 8.
A cosmic abundance standard Fernanda Nieva from massive stars in the Solar Neighborhood Norbert Przybilla (Bamberg-Erlangen) & Keith Butler (LMU)
From an evolutionary point of view Selma de Mink Utrecht University Lorentz Center Workshop “Stellar Mergers” Ines Brott (Utrecht), Matteo Cantiello (Utrecht),
Gamma-Ray Bursts observed by XMM-Newton Paul O’Brien X-ray and Observational Astronomy Group, University of Leicester Collaborators:- James Reeves, Darach.
Different Kinds of “Novae” I. Super Novae Type Ia: No hydrogen, CO WD deflagration --> detonation Type Ia: No hydrogen, CO WD deflagration --> detonation.
Multi-Epoch Star Formation? The Curious Case of Cluster Stephen Eikenberry University of Florida 11 April 2007.
Linear spectropolarimetry Jorick Vink (Armagh Observatory)
Discordant Estimates of Mass-Loss Rates for O-Type Stars Alex Fullerton STScI /HIA Derck Massa (STScI/SGT) & Raman Prinja (UCL)
Are Stellar Eruptions a Common Trait of SNe IIn? Baltimore, MD 06/29/11 Ori Fox NPP Fellow NASA Goddard Based on arXiv:
Warm Absorbers: Are They Disk Outflows? Daniel Proga UNLV.
GLAST GRB Science Group First GLAST Symposium, Stanford February 7, 2007 Elisabetta Bissaldi *, Francesco Longo ‡, Francesco Calura †, Francesca Matteucci.
Feedback Observations and Simulations of Elliptical Galaxies –Daniel Wang, Shikui Tang, Yu Lu, Houjun Mo (UMASS) –Mordecai Mac-Low (AMNH) –Ryan Joung (Princeton)
Progenitor stars of supernovae Poonam Chandra Royal Military College of Canada.
Padova, October Padova, October 1980 Padova, October 1980.
HD5980: is it a real LBV? Leonid Georgiev 1, Gloria Koenigsberger 2, John Hillier 3 1. Instituto de Astronomía, Universidad Nacional Autonoma de México;
Discussions about Z effects on the Conti scenario Geneva, 1983.
Y. Matsuo A), M. Hashimoto A), M. Ono A), S. Nagataki B), K. Kotake C), S. Yamada D), K. Yamashita E) Long Time Evolutionary Simulations in Supernova until.
Magneto-hydrodynamic Simulations of Collapsars Shin-ichiro Fujimoto (Kumamoto National College of Technology), Collaborators: Kei Kotake(NAOJ), Sho-ichi.
What the Formation of the First Stars Left in its Wake.
FUSE spectroscopy of cool PG1159 Stars Elke Reiff (IAAT) Klaus Werner, Thomas Rauch (IAAT) Jeff Kruk (JHU Baltimore) Lars Koesterke (University of Texas)
Study of the type IIP supernova 2008gz Roy et al. 2011, MNRAS accepted.
The Upper Main Sequence O stars OBN and OBC stars Wolf-Rayet stars Meredith Danowski Astronomy 411 Feb. 14, 2007.
A540 – Stellar Atmospheres Organizational Details Meeting times Textbook Syllabus Projects Homework Topical Presentations Exams Grading Notes.
Lecture 9: Wind-Blown Bubbles September 21, 2011.
8/18/2010 Claus Leitherer: Young Stellar Populations 1 Young Stellar Populations in the Ultraviolet Claus Leitherer (STScI)
Matteo Cantiello Astronomical Institute Utrecht Binary star progenitors of long GRBs M. Cantiello, S.-C. Yoon, N. Langer, and M. Livio A&A 465, L29-L33.
On the origin of Microturbulence in hot stars
CSI in SNRs You-Hua Chu Inst of Astron and Astroph
Progenitors of long GRBs
Stellar Winds of Massive Stars Lamers & Cassinelli (1999)
N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo),
Pre-supernova mass-loss predictions for massive stars
Single Vs binary star progenitors of Type Iib Sne
Midwest Workshop on SUPernovae and TRansients Niharika Sravan
Presentation transcript:

Massive star feedback – from the first stars to the present Jorick Vink (Keele University)

Outline Why predict Mass-loss rates? (as a function of Z) Monte Carlo Method Results OB, B[e], LBV & WR winds Cosmological implications? Look into the Future

Why predict Mdot ? Energy & Momentum input into ISM

Massive star feedback NGC 3603

Why predict Mdot ? Energy & Momentum input into ISM

Why predict Mdot ? Energy & Momentum input into ISM Stellar Evolution

Evolution of a Massive Star O B[e]

Why predict Mdot ? Energy & Momentum input into ISM Stellar Evolution –Explosions: SN, GRBs

Progenitor for Collapsar model Rapidly rotating Hydrogen-free star (Wolf-Rayet star) But…… Woosley (1993)

Progenitor for Collapsar model Rapidly rotating Hydrogen-free star (Wolf-Rayet star) But…… Stars have winds… Woosley (1993)

Why predict Mdot ? Energy & Momentum input into ISM Stellar Evolution –Explosions: SN, GRBs –Final product: Neutron star, Black hole

Why predict Mdot ? Energy & Momentum input into ISM Stellar Evolution –Explosions: SN, GRBs –Final product: Neutron star, Black hole –X-ray populations in galaxies

Why predict Mdot ? Energy & Momentum input into ISM Stellar Evolution

Why predict Mdot ? Energy & Momentum input into ISM Stellar Evolution Stellar Spectra

Why predict Mdot ? Energy & Momentum input into ISM Stellar Evolution Stellar Spectra –Analyses of starbursts

Why predict Mdot ? Energy & Momentum input into ISM Stellar Evolution Stellar Spectra –Analyses of starbursts –Ionizing Fluxes

Why predict Mdot ? Energy & Momentum input into ISM Stellar Evolution Stellar Spectra

Why predict Mdot ? Energy & Momentum input into ISM Stellar Evolution Stellar Spectra Stellar “Cosmology”

From Scientific American

The First Stars Credit: V. Bromm

The Final products of Pop III stars (Heger et al. 2003)

From Scientific American

Why predict Mdot ? Energy & Momentum input into ISM Stellar Evolution Stellar spectra “Stellar cosmology”

Observations of the first stars

Goal: quantifying mass loss a function of Z (and z) What do we know at solar Z ?

Radiation-driven wind by Lines dM/dt = f (Z, L, M, Teff) STAR Fe Lucy & Solomon (1970) Castor, Abbott & Klein (1975) = CAK Wind

Radiation-driven wind by Lines dM/dt = f (Z, L, M, Teff) Abbott & Lucy (1985)

Momentum problem in O star winds A systematic discrepancy

Monte Carlo approach

Approach: Assume a velocity law Compute model atmosphere, ionization stratification, level populations Monte Carlo to compute radiative force

Mass loss parameter study

Monte Carlo Mass loss comparison No systematic discrepancy anymore ! (Vink et al. 2000)

Lamers et al. (1995) Crowther et al. (2006)

Monte Carlo Mass-loss rates  dM/dt increases by factor 3-5 (Vink et al. 1999)

The bi-stability Jump HOT Fe IV low dM/dt high Vinf Low density COOL Fe III high dM/dt low Vinf High density

Stars should pass the bistable limit During evolution from O  B LBVs on timescales of years

LBVs in the HRD Smith, Vink & de Koter (2004)

The mass loss of LBVs Stahl et al. (2001) Vink & de Koter (2002) Data Models

Stars should pass the bistable limit During evolution from O  B LBVs on timescales of years Implications for circumstellar medium (CSM) Mass-loss rate up ~ 2 wind velocity down ~ 2 CSM density variations ~ 4

SN-CSM interaction  radio Weiler et al. (2002)

Mass Loss Results from Radio SNe OB star? WR?

SN 2001ig & 2003bg Soderberg et al. (2006) 2003bg 2001ig Ryder et al. (2004)

Progenitors AGB star Binary WR system WR star LBV

Progenitors AGB star Binary WR system WR star LBV Kotak & Vink (2006)

Assumptions in line-force models Stationary One fluid Spherical

Polarimetry – from disks

Depolarisation

Asphericity in LBV: HR CAR (Davies, Oudmaijer & Vink 2005) SURVEY: asphericity found in 50%

Variable polarization in AG CAR (Davies, Oudmaijer & Vink 2005)  RANDOM: CLUMPS!!

Assumptions in line-force models Stationary One fluid Spherical Homogeneous, no clumps

Success of Monte Carlo at solar Z O-star Mass loss rates Prediction of the bi-stability jump Mass loss behaviour of LBVs like AG Car  Monte Carlo mass-loss used in stellar models in Galaxy

O star mass-loss Z-dependence (Vink et al. 2001)

O star mass-loss Z-dependence Kudritzki (2002) --- Vink et al. (2001)

O star mass-loss Z-dependence

Which metals are important? At lower Z : Fe  CNO solar Z low Z Fe CNO H,He Vink et al. (2001)

WR stars produce Carbon ! Geneva models (Maeder & Meynet 1987)

WR stars produce Carbon ! Geneva models (Maeder & Meynet 1987)

Which element drives WR winds? -C  WR mass loss not Z(Fe)-dependent -Fe  WR mass loss depends on Z host

Z-dependence of WR winds Vink & de Koter (2005, A&A 442, 587) WC WN

Corollary of lower WR mass loss:  less angular momentum loss  favouring the collapse of WR stars to produce GRBs  Long-duration GRBs favoured at low Z

Conclusions Successful MC Models at solar Z O star winds are Z-dependent (Fe) WR winds are Z-dependent (Fe)  GRBs Low-Z WC models: flattening of this dependence Below log(Z/Zsun) = -3  “Plateau”  Mass loss may play a role in early Universe

Future Work Solving momentum equation Wind Clumping Compute Mdot close to Eddington limit

Mass loss & Eddington Limit Vink (2006) - astro-ph/ ~ Gamma^5

Future Work Solving momentum equation Wind Clumping Compute Mdot close to Eddington limit Compute Mdot at subsolar and Z = 0

From Scientific American

Non-consistent velocity law Beta = 1 WC8

Wind momenta at low Z Vink et al. (2001) Mokiem et al. (2007) Models (Vink) Data (Mokiem)

Two O-star approaches 1. CAK-type  Line force approximated  v(r) predicted CAK, Pauldrach (1986), Kudritzki (2002) 2. Monte Carlo  V(r) adopted  Line force computed – for all radii  multiple scatterings included Abbott & Lucy (1985) Vink, de Koter & Lamers (2000,2001)

Advantages of our method Non-LTE Unified treatment (no core-halo) Monte Carlo line force at all radii Multiple scatterings  O stars at solar Z & low Z LBV variability & WR as a function of Z

The bi-stability Jump HOT Fe IV low dM/dt high V(inf) Low density COOL Fe III dM/dt = 5 dM/dt HOT V(inf) = ½ vinf HOT High density = 10 HOT

The reason for the bi-stability jump Temperature drops  Fe recombines from Fe IV to Fe III  Line force increases  dM/dt up  density up  V(inf) drops  “Runaway”

Quantifying the effect of the velocity law

Can we use our approach for WR stars? Potential problems: –Are these winds radiatively driven? –Is Beta = 1 a good velocity law? –Do we miss any relevant opacities? –What about wind clumping?

B Supergiants Wind-Momenta Vink, de Koter & Lamers (2000)

New Developments: Hot Iron Bump Fe X --- Fe XVI Graefener & Hamann (2005) can “drive” a WC5 star self-consistently  Use Monte Carlo approach for a differential study of Mass loss versus Z

The bi-stability jump at B1 Lamers et al. (1995) Pauldrach & Puls (1990)